Spaces:
Runtime error
Runtime error
import random | |
import gradio as gr | |
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor | |
from torchvision.transforms import ColorJitter, functional as F | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
import evaluate | |
# Define the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the models | |
original_model_id = "guimCC/segformer-v0-gta" | |
lora_model_id = "guimCC/segformer-v0-gta-cityscapes" | |
original_model = SegformerForSemanticSegmentation.from_pretrained(original_model_id).to(device) | |
lora_model = SegformerForSemanticSegmentation.from_pretrained(lora_model_id).to(device) | |
# Load the dataset and select the first 10 images | |
dataset = load_dataset("Chris1/cityscapes", split="validation") | |
sampled_dataset = dataset.select(range(10)) # Select the first 10 examples | |
# Define your custom image processor | |
jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) | |
# Initialize mIoU metric | |
metric = evaluate.load("mean_iou") | |
# Define id2label and processor if not already defined | |
id2label = { | |
0: 'road', 1: 'sidewalk', 2: 'building', 3: 'wall', 4: 'fence', 5: 'pole', | |
6: 'traffic light', 7: 'traffic sign', 8: 'vegetation', 9: 'terrain', | |
10: 'sky', 11: 'person', 12: 'rider', 13: 'car', 14: 'truck', 15: 'bus', | |
16: 'train', 17: 'motorcycle', 18: 'bicycle', 19: 'ignore' | |
} | |
processor = SegformerImageProcessor() | |
# Cityscapes color palette | |
palette = np.array([ | |
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], | |
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], | |
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], | |
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], [0, 0, 0] | |
]) | |
def handle_grayscale_image(image): | |
np_image = np.array(image) | |
if np_image.ndim == 2: # Grayscale image | |
np_image = np.tile(np.expand_dims(np_image, -1), (1, 1, 3)) | |
return Image.fromarray(np_image) | |
def preprocess_image(image): | |
image = handle_grayscale_image(image) | |
image = jitter(image) # Apply color jitter | |
pixel_values = F.to_tensor(image).unsqueeze(0) # Convert to tensor and add batch dimension | |
return pixel_values.to(device) | |
def postprocess_predictions(logits): | |
logits = logits.squeeze().detach().cpu().numpy() | |
segmentation = np.argmax(logits, axis=0).astype(np.uint8) # Convert to 8-bit integer | |
return segmentation | |
def compute_miou(logits, labels): | |
with torch.no_grad(): | |
logits_tensor = torch.from_numpy(logits) | |
# Scale the logits to the size of the label | |
logits_tensor = F.interpolate( | |
logits_tensor, | |
size=labels.shape[-2:], | |
mode="bilinear", | |
align_corners=False, | |
).argmax(dim=1) | |
pred_labels = logits_tensor.detach().cpu().numpy() | |
# Ensure the shapes of pred_labels and labels match | |
if pred_labels.shape != labels.shape: | |
labels = np.resize(labels, pred_labels.shape) | |
pred_labels = [pred_labels] # Wrap in a list | |
labels = [labels] # Wrap in a list | |
metrics = metric.compute( | |
predictions=pred_labels, | |
references=labels, | |
num_labels=len(id2label), | |
ignore_index=19, | |
reduce_labels=processor.do_reduce_labels, | |
) | |
mean_iou = metrics.get('mean_iou', 0.0) | |
if np.isnan(mean_iou): | |
mean_iou = 0.0 # Handle NaN values gracefully | |
return mean_iou | |
def apply_color_palette(segmentation): | |
colored_segmentation = palette[segmentation] | |
return Image.fromarray(colored_segmentation.astype(np.uint8)) | |
def create_legend(): | |
# Define font and its size | |
try: | |
font = ImageFont.truetype("arial.ttf", 15) | |
except IOError: | |
font = ImageFont.load_default() | |
# Calculate legend dimensions | |
num_classes = len(id2label) | |
legend_height = 20 * ((num_classes + 1) // 2) # Two items per row | |
legend_width = 250 | |
# Create a blank image for the legend | |
legend = Image.new("RGB", (legend_width, legend_height), (255, 255, 255)) | |
draw = ImageDraw.Draw(legend) | |
# Draw each color and its label | |
for i, (class_id, class_name) in enumerate(id2label.items()): | |
color = tuple(palette[class_id]) | |
x = (i % 2) * 120 | |
y = (i // 2) * 20 | |
draw.rectangle([x, y, x + 20, y + 20], fill=color) | |
draw.text((x + 30, y + 5), class_name, fill=(0, 0, 0), font=font) | |
return legend | |
def inference(index, legend): | |
"""Run inference on the input image with both models.""" | |
image = sampled_dataset[index]['image'] # Fetch image from the sampled dataset | |
pixel_values = preprocess_image(image) | |
# Original model inference | |
with torch.no_grad(): | |
original_outputs = original_model(pixel_values=pixel_values) | |
original_segmentation = postprocess_predictions(original_outputs.logits) | |
# LoRA model inference | |
with torch.no_grad(): | |
lora_outputs = lora_model(pixel_values=pixel_values) | |
lora_segmentation = postprocess_predictions(lora_outputs.logits) | |
# Apply color palette | |
original_segmentation_image = apply_color_palette(original_segmentation) | |
lora_segmentation_image = apply_color_palette(lora_segmentation) | |
# Return the original image, the segmentations, and mIoU | |
return ( | |
image, | |
original_segmentation_image, | |
lora_segmentation_image, | |
) | |
# Create a list of image options for the user to select from | |
image_options = [(f"Image {i}", i) for i in range(len(sampled_dataset))] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.Dropdown(label="Select Image", choices=image_options), | |
gr.Image(type="pil", label="Legend", value=create_legend) | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Image(type="pil", label="Original Model Prediction"), | |
gr.Image(type="pil", label="LoRA Model Prediction"), | |
], | |
live=True | |
) | |
# Launch the interface | |
iface.launch() | |