File size: 12,041 Bytes
bc5b0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#####################################################
# AST Composite Server Double Two
# By Guillaume Descoteaux-Isabelle, 20021
#
# This server compose two Adaptive Style Transfer model (output of the first pass serve as input to the second using the same model)
########################################################
#v1-dev
#Receive the 2 res from arguments in the request...


import os
import numpy as np
import tensorflow as tf
import cv2
from module import encoder, decoder
from glob import glob
import runway
from runway.data_types import number, text


#from utils import *
import scipy
from datetime import datetime
import time




# Determining the size of the passes
pass1_image_size = 1328
if not os.getenv('PASS1IMAGESIZE'):
   print("PASS1IMAGESIZE env var non existent;using default:" + str(pass1_image_size)) 
else:
   pass1_image_size = os.getenv('PASS1IMAGESIZE', 1328)
   print("PASS1IMAGESIZE value:" + str(pass1_image_size))


# Determining the size of the passes
autoabc = 1
if not os.getenv('AUTOABC'):
   print("AUTOABC env var non existent;using default:")
   print(autoabc)
   abcdefault = 1
   print("NOTE----> when running docker, set   AUTOABC variable")
   print("   docker run ...  -e AUTOABC=1  #enabled, 0 to disabled (default)")
else:
   autoabc = os.getenv('AUTOABC',1)
   print("AUTOABC value:")
   print(autoabc)
   abcdefault = autoabc


#pass2_image_size = 1024
#if not os.getenv('PASS2IMAGESIZE'):
#   print("PASS2IMAGESIZE env var non existent;using default:" + pass2_image_size)
#else:
#   pass2_image_size = os.getenv('PASS2IMAGESIZE')
#   print("PASS2IMAGESIZE value:" + pass2_image_size)

# pass3_image_size = 2048
# if not os.getenv('PASS3IMAGESIZE'):
#    print("PASS3IMAGESIZE env var non existent;using default:" + pass3_image_size)
# else:
#    pass3_image_size = os.getenv('PASS3IMAGESIZE')
#    print("PASS3IMAGESIZE value:" + pass3_image_size)

##########################################
##   MODELS
#model name for sending it in the response
model1name = "UNNAMED"
if not os.getenv('MODEL1NAME'):
   print("MODEL1NAME env var non existent;using default:" + model1name)
else:
   model1name = os.getenv('MODEL1NAME', "UNNAMED")
   print("MODEL1NAME value:" + model1name)
   
# #m2
# model2name = "UNNAMED"
# if not os.getenv('MODEL2NAME'):   print("MODEL2NAME env var non existent;using default:" + model2name)
# else:
#    model2name = os.getenv('MODEL2NAME')
#    print("MODEL2NAME value:" + model2name)

# #m3
# model3name = "UNNAMED"
# if not os.getenv('MODEL3NAME'):   print("MODEL3NAME env var non existent;using default:" + model3name)
# else:
#    model3name = os.getenv('MODEL3NAME')
#    print("MODEL3NAME value:" + model3name)

#######################################################


#########################################################
# SETUP

@runway.setup(options={'styleCheckpoint': runway.file(is_directory=True)})
def setup(opts):
    sess = tf.Session()
    # sess2 = tf.Session()
    # sess3 = tf.Session()
    init_op = tf.global_variables_initializer()
    # init_op2 = tf.global_variables_initializer()
    # init_op3 = tf.global_variables_initializer()
    sess.run(init_op)
    # sess2.run(init_op2)
    # sess3.run(init_op3)
    with tf.name_scope('placeholder'):
        input_photo = tf.placeholder(dtype=tf.float32,
                                     shape=[1, None, None, 3],
                                     name='photo')
    input_photo_features = encoder(image=input_photo,
                                   options={'gf_dim': 32},
                                   reuse=False)
    output_photo = decoder(features=input_photo_features,
                           options={'gf_dim': 32},
                           reuse=False)
    saver = tf.train.Saver()
    # saver2 = tf.train.Saver()
    # saver3 = tf.train.Saver()
    path = opts['styleCheckpoint']
    #Getting the model name
    model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][0]    
    if not os.getenv('MODELNAME'):
        dtprint("CONFIG::MODELNAME env var non existent;using default:" + model_name)
    else:
        model_name = os.getenv('MODELNAME')
    
    

    # #Getting the model2 name
    # model2_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][1]
    # if not os.getenv('MODEL2NAME'):
    #     dtprint("CONFIG::MODEL2NAME env var non existent;using default:" + model2_name)
    # else:
    #     model2_name = os.getenv('MODEL2NAME')
        

    ##Getting the model3 name
    # model3_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][2]
    # if not os.getenv('MODEL3NAME'):
    #     dtprint("CONFIG::MODEL3NAME env var non existent;using default:" + model3_name)
    # else:
    #     model3_name = os.getenv('MODEL3NAME')
    
    

    checkpoint_dir = os.path.join(path, model_name, 'checkpoint_long')
    #checkpoint2_dir = os.path.join(path, model2_name, 'checkpoint_long')
    # checkpoint3_dir = os.path.join(path, model3_name, 'checkpoint_long')
    print("-----------------------------------------")
    print("modelname is : " + model_name)
    #print("model2name is : " + model2_name)
    # print("model3name is : " + model3_name)
    print("checkpoint_dir is : " + checkpoint_dir)

    print("Auto Brightness-Contrast Correction can be set as the x2 of this SingleOne Server")

    
    #print("checkpoint2_dir is : " + checkpoint2_dir)
    # print("checkpoint3_dir is : " + checkpoint3_dir)
    print("-----------------------------------------")
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    #ckpt2 = tf.train.get_checkpoint_state(checkpoint2_dir)
    # ckpt3 = tf.train.get_checkpoint_state(checkpoint3_dir)
    ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
    #ckpt2_name = os.path.basename(ckpt2.model_checkpoint_path)
    # ckpt3_name = os.path.basename(ckpt3.model_checkpoint_path)
    saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
    #saver2.restore(sess2, os.path.join(checkpoint2_dir, ckpt2_name))
    # saver3.restore(sess3, os.path.join(checkpoint3_dir, ckpt3_name))
    m1 = dict(sess=sess, input_photo=input_photo, output_photo=output_photo)
    #m2 = dict(sess=sess2, input_photo=input_photo, output_photo=output_photo)
    # m3 = dict(sess=sess3, input_photo=input_photo, output_photo=output_photo)
    models = type('', (), {})()
    models.m1 = m1
    #models.m2 = m2
    # models.m3 = m3
    return models


#@STCGoal add number or text to specify resolution of the three pass
inputs={'contentImage': runway.image,'x1':number(default=1024,min=24,max=17000),'x2':number(default=0,min=-99,max=99)}
outputs={'stylizedImage': runway.image,'totaltime':number,'x1': number,'c1':number,'model1name':text}

@runway.command('stylize', inputs=inputs, outputs=outputs)
def stylize(models, inp):
    start = time.time()
    dtprint("Composing.1..")
    model = models.m1
    #model2 = models.m2
    # model3 = models.m3
    
    #Getting our names back (even though I think we dont need)
    #@STCIssue BUGGED
    # m1name=models.m1.name
    # m2name=models.m2.name
    # m3name=models.m3.name

    #get size from inputs rather than env
    x1 = inp['x1']
    c1 = inp['x2']
    # x3 = inp['x3']
    if c1 > 99:
        ci = abcdefault


    #
    img = inp['contentImage']
    img = np.array(img)
    img = img / 127.5 - 1.

    #@a Pass 1 RESIZE to 1368px the smaller side
    image_size=pass1_image_size
    image_size=x1
    img_shape = img.shape[:2]
    alpha = float(image_size) / float(min(img_shape))
    dtprint ("DEBUG::content.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    try:
        img = scipy.misc.imresize(img, size=alpha)
    except:
        pass
        

    img = np.expand_dims(img, axis=0)
    #@a INFERENCE PASS 1
    dtprint("INFO:Pass1 inference starting")
    img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
    dtprint("INFO:Pass1 inference done")
    #
    img = (img + 1.) * 127.5
    img = img.astype('uint8')
    img = img[0]
    #dtprint("INFO:Upresing Pass1 for Pass 2 (STARTING) ")

    #@a Pass 2 RESIZE to 1024px the smaller side
    #image_size=pass2_image_size
    #image_size=x2
    #img_shape = img.shape[:2]
    
    
    #alpha = float(image_size) / float(min(img_shape))
    #dtprint ("DEBUG::pass1.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    #img = scipy.misc.imresize(img, size=alpha)
    #dtprint("INFO:Upresing Pass1 (DONE) ")

    #Iteration 2    
    #img = np.array(img)
    #img = img / 127.5 - 1.
    #img = np.expand_dims(img, axis=0)
    #@a INFERENCE PASS 2 using the same model
    #dtprint("INFO:Pass2 inference (STARTING)")
    #img = model['sess'].run(model['output_photo'], feed_dict={model['input_photo']: img})
    #dtprint("INFO:Pass2 inference (DONE)")
    #img = (img + 1.) * 127.5
    #img = img.astype('uint8')
    #img = img[0]



    # #pass3

    # #@a Pass 3 RESIZE to 2048px the smaller side
    # image_size=pass3_image_size
    # image_size=x3
    # img_shape = img.shape[:2]
    
    
    # alpha = float(image_size) / float(min(img_shape))
    # dtprint ("DEBUG::pass2.imgshape:" +   str(tuple(img_shape)) + ", alpha:" + str(alpha))

    # img = scipy.misc.imresize(img, size=alpha)
    # dtprint("INFO:Upresing Pass2 (DONE) ")

    # #Iteration 3
    # img = np.array(img)
    # img = img / 127.5 - 1.
    # img = np.expand_dims(img, axis=0)
    # #@a INFERENCE PASS 3
    # dtprint("INFO:Pass3 inference (STARTING)")
    # img = model3['sess'].run(model3['output_photo'], feed_dict={model3['input_photo']: img})
    # dtprint("INFO:Pass3 inference (DONE)")
    # img = (img + 1.) * 127.5
    # img = img.astype('uint8')
    # img = img[0]
    # #pass3

    #dtprint("INFO:Composing done")
    print('autoabc value:')
    print(c1)
    if c1 != 0 :
        print('Auto Brightening images...')
        img = img, alpha2, beta = automatic_brightness_and_contrast(img,c1)

    stop = time.time()
    totaltime = stop - start
    print("The time of the run:", totaltime)
    res2 = dict(stylizedImage=img,totaltime=totaltime,x1=x1,model1name=model1name,c1=c1)
    return res2



def dtprint(msg):
    dttag=getdttag()
    print(dttag + "::" + msg  )

def getdttag():
    # datetime object containing current date and time
    now = datetime.now()    

    # dd/mm/YY H:M:S
    # dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
    return now.strftime("%H:%M:%S")



# Automatic brightness and contrast optimization with optional histogram clipping
def automatic_brightness_and_contrast(image, clip_hist_percent=25):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Calculate grayscale histogram
    hist = cv2.calcHist([gray],[0],None,[256],[0,256])
    hist_size = len(hist)

    # Calculate cumulative distribution from the histogram
    accumulator = []
    accumulator.append(float(hist[0]))
    for index in range(1, hist_size):
        accumulator.append(accumulator[index -1] + float(hist[index]))

    # Locate points to clip
    maximum = accumulator[-1]
    clip_hist_percent *= (maximum/100.0)
    clip_hist_percent /= 2.0

    # Locate left cut
    minimum_gray = 0
    while accumulator[minimum_gray] < clip_hist_percent:
        minimum_gray += 1

    # Locate right cut
    maximum_gray = hist_size -1
    while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
        maximum_gray -= 1

    # Calculate alpha and beta values
    alpha = 255 / (maximum_gray - minimum_gray)
    beta = -minimum_gray * alpha

    '''
    # Calculate new histogram with desired range and show histogram 
    new_hist = cv2.calcHist([gray],[0],None,[256],[minimum_gray,maximum_gray])
    plt.plot(hist)
    plt.plot(new_hist)
    plt.xlim([0,256])
    plt.show()
    '''

    auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
    return (auto_result, alpha, beta)


if __name__ == '__main__':
    #print('External Service port is:' +os.environ.get('SPORT'))    
    os.environ["RW_PORT"] = "7860"
    runway.run()