Spaces:
Build error
Build error
Upload snli_ve.py
#1
by
guidel
- opened
- tasks/mm_tasks/snli_ve.py +197 -0
tasks/mm_tasks/snli_ve.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The OFA-Sys Team.
|
2 |
+
# All rights reserved.
|
3 |
+
# This source code is licensed under the Apache 2.0 license
|
4 |
+
# found in the LICENSE file in the root directory.
|
5 |
+
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import math
|
9 |
+
from dataclasses import dataclass, field
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from fairseq import metrics
|
14 |
+
from fairseq.tasks import register_task
|
15 |
+
|
16 |
+
from tasks.ofa_task import OFAConfig, OFATask
|
17 |
+
from data.mm_data.snli_ve_dataset import SnliVeDataset
|
18 |
+
from data.file_dataset import FileDataset
|
19 |
+
from data import data_utils
|
20 |
+
from utils.trie import Trie
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class SnliVeConfig(OFAConfig):
|
27 |
+
ans2label_dict: Optional[str] = field(
|
28 |
+
default='{"no": 0, "yes":1, "maybe": 2}',
|
29 |
+
metadata={"help": 'answer to label dict'},
|
30 |
+
)
|
31 |
+
add_caption: bool = field(
|
32 |
+
default=False,
|
33 |
+
metadata={"help": "add caption to encoder"},
|
34 |
+
)
|
35 |
+
valid_batch_size: int = field(
|
36 |
+
default=20,
|
37 |
+
metadata={"help": "valid batch size per step"},
|
38 |
+
)
|
39 |
+
prompt_type: Optional[str] = field(
|
40 |
+
default=None,
|
41 |
+
metadata={"help": "prompt_type"},
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
@register_task("snli_ve", dataclass=SnliVeConfig)
|
46 |
+
class SnliVeTask(OFATask):
|
47 |
+
def __init__(self, cfg: SnliVeConfig, src_dict, tgt_dict):
|
48 |
+
super().__init__(cfg, src_dict, tgt_dict)
|
49 |
+
self.ans2label_dict = json.loads(self.cfg.ans2label_dict)
|
50 |
+
|
51 |
+
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
|
52 |
+
paths = self.cfg.data.split(',')
|
53 |
+
assert len(paths) > 0
|
54 |
+
|
55 |
+
if split == 'train':
|
56 |
+
file_path = paths[(epoch - 1) % (len(paths) - 1)]
|
57 |
+
else:
|
58 |
+
file_path = paths[-1]
|
59 |
+
dataset = FileDataset(file_path, self.cfg.selected_cols)
|
60 |
+
|
61 |
+
self.datasets[split] = SnliVeDataset(
|
62 |
+
split,
|
63 |
+
dataset,
|
64 |
+
self.bpe,
|
65 |
+
self.src_dict,
|
66 |
+
self.tgt_dict,
|
67 |
+
max_src_length=self.cfg.max_src_length,
|
68 |
+
max_tgt_length=self.cfg.max_tgt_length,
|
69 |
+
patch_image_size=self.cfg.patch_image_size,
|
70 |
+
add_caption=self.cfg.add_caption,
|
71 |
+
constraint_trie=self.constraint_trie,
|
72 |
+
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
|
73 |
+
prompt_type=self.cfg.prompt_type
|
74 |
+
)
|
75 |
+
|
76 |
+
def build_model(self, cfg):
|
77 |
+
model = super().build_model(cfg)
|
78 |
+
answer_item_list = []
|
79 |
+
self.index2ans = {}
|
80 |
+
self.constraint_trie = Trie(self.tgt_dict.eos())
|
81 |
+
for i, answer in enumerate(self.ans2label_dict.keys()):
|
82 |
+
answer_item = self.tgt_dict.encode_line(
|
83 |
+
line=self.bpe.encode(' ' + answer),
|
84 |
+
add_if_not_exist=False,
|
85 |
+
append_eos=False
|
86 |
+
).long()
|
87 |
+
answer_item_list.append(answer_item)
|
88 |
+
self.index2ans[i] = answer
|
89 |
+
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()])
|
90 |
+
|
91 |
+
constraint_mask_list = []
|
92 |
+
for answer_item in answer_item_list:
|
93 |
+
constraint_mask = torch.zeros((len(answer_item)+1, len(self.tgt_dict))).bool()
|
94 |
+
for i in range(len(answer_item)+1):
|
95 |
+
constraint_prefix_token = [self.src_dict.bos()] + answer_item[:i].tolist()
|
96 |
+
constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
|
97 |
+
constraint_mask[i][constraint_nodes] = True
|
98 |
+
constraint_mask_list.append(constraint_mask)
|
99 |
+
|
100 |
+
self.valid_answers_list = []
|
101 |
+
self.valid_constraint_masks_list = []
|
102 |
+
for i in range(0, len(answer_item_list), self.cfg.valid_batch_size):
|
103 |
+
self.valid_answers_list += [answer_item_list[i:i+self.cfg.valid_batch_size]]
|
104 |
+
self.valid_constraint_masks_list += [constraint_mask_list[i:i+self.cfg.valid_batch_size]]
|
105 |
+
|
106 |
+
return model
|
107 |
+
|
108 |
+
def build_generator(
|
109 |
+
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
|
110 |
+
):
|
111 |
+
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn)
|
112 |
+
seq_generator.constraint_trie = self.constraint_trie
|
113 |
+
|
114 |
+
return seq_generator
|
115 |
+
|
116 |
+
def valid_step(self, sample, model, criterion, **extra_kwargs):
|
117 |
+
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
|
118 |
+
|
119 |
+
model.eval()
|
120 |
+
with torch.no_grad():
|
121 |
+
encoder_out = model.encoder(
|
122 |
+
sample["net_input"]["src_tokens"],
|
123 |
+
src_lengths=sample["net_input"]["src_lengths"],
|
124 |
+
patch_images=sample["net_input"]["patch_images"],
|
125 |
+
patch_masks=sample["net_input"]["patch_masks"]
|
126 |
+
)
|
127 |
+
device = sample["net_input"]["src_tokens"].device
|
128 |
+
eos_item = torch.tensor([self.src_dict.eos()])
|
129 |
+
pad = self.src_dict.pad()
|
130 |
+
valid_result = []
|
131 |
+
for valid_answers, valid_constraint_masks in zip(self.valid_answers_list, self.valid_constraint_masks_list):
|
132 |
+
valid_size = len(valid_answers)
|
133 |
+
valid_tgt_items = [
|
134 |
+
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
|
135 |
+
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
136 |
+
]
|
137 |
+
valid_prev_items = [
|
138 |
+
torch.cat([torch.tensor(decoder_prompt), valid_answer])
|
139 |
+
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
140 |
+
]
|
141 |
+
valid_constraint_mask_items = [
|
142 |
+
torch.cat([torch.zeros(len(decoder_prompt)-1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0)
|
143 |
+
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
|
144 |
+
]
|
145 |
+
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad, left_pad=False).to(device)
|
146 |
+
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad, left_pad=False).to(device)
|
147 |
+
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad, left_pad=False).to(device)
|
148 |
+
|
149 |
+
new_encoder_out = {}
|
150 |
+
new_encoder_out["encoder_out"] = [
|
151 |
+
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
|
152 |
+
]
|
153 |
+
new_encoder_out["encoder_padding_mask"] = [
|
154 |
+
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
|
155 |
+
]
|
156 |
+
new_encoder_out["position_embeddings"] = [
|
157 |
+
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
|
158 |
+
]
|
159 |
+
|
160 |
+
decoder_out = model.decoder(valid_prev_output, encoder_out=new_encoder_out)
|
161 |
+
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
|
162 |
+
lprobs = model.get_normalized_probs(decoder_out, log_probs=True)
|
163 |
+
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
|
164 |
+
scores = scores.masked_fill(valid_tgt.eq(self.tgt_dict.pad()), 0)
|
165 |
+
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
|
166 |
+
scores = scores.sum(1)
|
167 |
+
scores = scores.view(-1, valid_size)
|
168 |
+
valid_result.append(scores)
|
169 |
+
|
170 |
+
valid_result = torch.cat(valid_result, dim=-1)
|
171 |
+
predicts = valid_result.argmax(1).tolist()
|
172 |
+
hyps = [self.index2ans[predict_index] for predict_index in predicts]
|
173 |
+
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
|
174 |
+
logging_output["_snli_score_sum"] = sum(scores)
|
175 |
+
logging_output["_snli_cnt"] = len(scores)
|
176 |
+
|
177 |
+
return loss, sample_size, logging_output
|
178 |
+
|
179 |
+
def reduce_metrics(self, logging_outputs, criterion):
|
180 |
+
super().reduce_metrics(logging_outputs, criterion)
|
181 |
+
|
182 |
+
def sum_logs(key):
|
183 |
+
import torch
|
184 |
+
result = sum(log.get(key, 0) for log in logging_outputs)
|
185 |
+
if torch.is_tensor(result):
|
186 |
+
result = result.cpu()
|
187 |
+
return result
|
188 |
+
|
189 |
+
def compute_score(meters):
|
190 |
+
score = meters["_snli_score_sum"].sum / meters["_snli_cnt"].sum
|
191 |
+
score = score if isinstance(score, float) else score.item()
|
192 |
+
return round(score, 4)
|
193 |
+
|
194 |
+
if sum_logs("_snli_cnt") > 0:
|
195 |
+
metrics.log_scalar("_snli_score_sum", sum_logs("_snli_score_sum"))
|
196 |
+
metrics.log_scalar("_snli_cnt", sum_logs("_snli_cnt"))
|
197 |
+
metrics.log_derived("snli_score", compute_score)
|