File size: 1,720 Bytes
7ae7542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
from transformers import CLIPModel, CLIPProcessor
import torch
from PIL import Image
#################################
#### FUNCTIONS
def load_clip(model_size='large'):
if model_size == 'base':
MODEL_name = 'openai/clip-vit-base-patch32'
elif model_size == 'large':
MODEL_name = 'openai/clip-vit-large-patch14'
model = CLIPModel.from_pretrained(MODEL_name)
processor = CLIPProcessor.from_pretrained(MODEL_name)
return processor, model
def inference_clip(options, image):
inputs = processor(text= options, images=image, return_tensors="pt", padding=True)
with torch.no_grad():
outputs = model(**inputs)
#logits_per_text = outputs.logits_per_text
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
max_prob_idx = torch.argmax(probs)
max_prob_option = options[max_prob_idx]
max_prob = probs[max_prob_idx].item()
return max_prob_option
#################################
#### LAYOUT
CLIP_large = load_clip(model_size='large')
picture_file = st.file_uploader("Picture :", type=["jpg", "jpeg", "png"])
if picture_file is not None:
image = Image.open(picture_file)
st.image(image, caption='Please upload an image of the damage', use_column_width=True)
#image
options = st.text_input(label="Please enter the classes", value="")
options = list(options)
# button to launch compute
if st.button("Compute"):
clip_processor, clip_model = load_clip(model_size='large')
result = inference_clip(options = options, image = image)
st.write(result)
|