Odi / app.py
gufett0's picture
Update app.py (#1)
0f44a4a verified
import spaces
import os
import gradio as gr
from models import download_models
from rag_backend import Backend
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import cv2
# get the models
huggingface_token = os.environ.get('HF_TOKEN')
download_models(huggingface_token)
documents_paths = {
'blockchain': 'data/blockchain',
'metaverse': 'data/metaverse',
'payment': 'data/payment'
}
# initialize backend (not ideal as global variable...)
backend = Backend()
cv2.setNumThreads(1)
@spaces.GPU(duration=20)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
print("HISTORY SO FAR ", history)
matched_path = None
words = message.lower()
for key, path in documents_paths.items():
if len(history) == 1 and key in words: # check if the user mentions a path word only during second interaction (i.e history has only one entry)
matched_path = path
break
print("matched_path", matched_path)
if matched_path: # this case would only be true in second interaction
original_message = history[0][0]
print("** matched path!!")
query_engine = backend.create_index_for_query_engine(matched_path)
message = backend.generate_prompt(query_engine, original_message)
gr.Info("Relevant context indexed from docs...")
elif (not matched_path) and (len(history) > 1):
print("Using context from storage db")
query_engine = backend.load_index_for_query_engine()
message = backend.generate_prompt(query_engine, message)
gr.Info("Relevant context extracted from db...")
# Load model only if it's not already loaded or if a new model is selected
if backend.llm is None or backend.llm_model != model:
try:
backend.load_model(model)
except Exception as e:
return f"Error loading model: {str(e)}"
provider = LlamaCppPythonProvider(backend.llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# add user and assistant messages to the history
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
try:
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
except Exception as e:
yield f"Error during response generation: {str(e)}"
demo = gr.ChatInterface(
fn=respond,
css="""
.gradio-container {
background-color: #B9D9EB;
color: #003366;
}""",
additional_inputs=[
gr.Dropdown([
'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf',
'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf',
'gemma-2-2b-it-Q6_K_L.gguf',
'openchat-3.6-8b-20240522-Q6_K.gguf',
'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf',
'MiniCPM-V-2_6-Q6_K.gguf',
'llama-3.1-storm-8b-q5_k_m.gguf',
'orca-2-7b-patent-instruct-llama-2-q5_k_m.gguf'
],
value="gemma-2-2b-it-Q6_K_L.gguf",
label="Model"
),
gr.Textbox(value="""Solamente all'inizio, presentati come Odi, un assistente ricercatore italiano creato dagli Osservatori del Politecnico di Milano e specializzato nel fornire risposte precise e pertinenti solo ad argomenti di innovazione digitale.
Solo nella tua prima risposta, se non è chiaro, chiedi all'utente di indicare a quale di queste tre sezioni degli Osservatori si riferisce la sua domanda: 'Blockchain', 'Payment' o 'Metaverse'. Nel fornire la risposta cita il report da cui la hai ottenuta.
Per le risposte successive, utilizza la cronologia della chat o il contesto fornito per aiutare l'utente a ottenere una risposta accurata.
Non rispondere mai a domande che non sono pertinenti a questi argomenti.""", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=3048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=30,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Riprova",
undo_btn="Annulla",
clear_btn="Riavvia chat",
submit_btn="Invia",
title="Odi, l'assistente ricercatore degli Osservatori",
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
),
examples=[["Ciao, in cosa puoi aiutarmi?"],["Quanto vale il mercato italiano?"], ["Per favore dammi informazioni sugli ambiti applicativi"], ["Chi è Francesco Bruschi?"], ["Svelami una buona ricetta milanese"] ],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()