Spaces:
Running
Running
import os | |
import torch | |
import librosa | |
import gradio as gr | |
from scipy.io.wavfile import write | |
from huggingface_hub import hf_hub_download, snapshot_download | |
import utils | |
from models import SynthesizerTrn | |
from mel_processing import mel_spectrogram_torch | |
from speaker_encoder.voice_encoder import SpeakerEncoder | |
import logging | |
from transformers import Wav2Vec2FeatureExtractor, HubertModel | |
# 设置日志级别和格式 | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# 模型配置 | |
MODEL_CONFIG = { | |
"freevc": { | |
"repo_id": "guetLzy/Chinese-FreeVC-Model", | |
"files": ["G_17000.pth", "G_35000.pth"] | |
}, | |
"hubert": { | |
"repo_id": "guetLzy/chinese-hubert-large-fariseq-ckpt", | |
} | |
} | |
# 设备设置 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# 可用的模型选项 | |
MODEL_OPTIONS = { | |
"Model_17000": "model/G_17000.pth", | |
"Model_35000": "model/G_35000.pth", | |
} | |
def download_models(): | |
"""下载所有需要的模型文件""" | |
os.makedirs("model", exist_ok=True) | |
os.makedirs("hubert/chinese-hubert-large-fairseq-ckpt", exist_ok=True) | |
freevc_paths = {} | |
for model_name, model_path in MODEL_OPTIONS.items(): | |
path = hf_hub_download( | |
repo_id=MODEL_CONFIG["freevc"]["repo_id"], | |
filename=os.path.basename(model_path), | |
local_dir="model", | |
resume_download=True | |
) | |
freevc_paths[model_name] = path | |
hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt" | |
snapshot_download( | |
repo_id=MODEL_CONFIG["hubert"]["repo_id"], | |
local_dir=hubert_dir, | |
repo_type="model", | |
resume_download=True | |
) | |
hubert_paths = {"snapshot": hubert_dir} | |
return { | |
"freevc": freevc_paths, | |
"hubert": hubert_paths | |
} | |
def load_hubert(hubert_dir, status_list): | |
"""加载HuBERT模型(使用fairseq格式的检查点)""" | |
status_list.append("正在加载 HuBERT 模型...") | |
logger.info("正在加载 HuBERT 模型...") | |
model = HubertModel.from_pretrained(hubert_dir) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_dir) | |
return model.to(device).float().eval(), feature_extractor | |
def load_freevc(model_path, status_list): | |
"""加载FreeVC模型(使用本地配置文件)""" | |
status_list.append(f"正在从 {model_path} 加载 FreeVC 模型...") | |
logger.info(f"正在从 {model_path} 加载 FreeVC 模型...") | |
hps = utils.get_hparams_from_file("configs/freevc.json") | |
net_g = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model | |
).to(device) | |
utils.load_checkpoint(model_path, net_g, None, True) | |
net_g.eval() | |
smodel = SpeakerEncoder("speaker_encoder/ckpt/pretrained_bak_5805000.pt") if hps.model.use_spk else None | |
return net_g, smodel, hps | |
# 预加载模型 | |
status_list = ["正在下载模型..."] | |
logger.info("正在下载模型...") | |
model_paths = download_models() | |
status_list.append(f"模型路径: {model_paths}") | |
logger.info(f"模型路径: {model_paths}") | |
status_list.append("正在初始化 HuBERT...") | |
logger.info("正在初始化 HuBERT...") | |
hubert_dir = "hubert/chinese-hubert-large-fairseq-ckpt" | |
hubert_model, hubert_feature_extractor = load_hubert(hubert_dir, status_list) | |
def voice_conversion(src_audio, tgt_audio, output_name, model_selection): | |
"""执行语音转换""" | |
status_list = ["开始语音转换..."] | |
try: | |
# 加载选中的FreeVC模型 | |
freevc_model, speaker_model, hps = load_freevc(MODEL_OPTIONS[model_selection], status_list) | |
with torch.no_grad(): | |
# 处理目标音频 | |
status_list.append("处理目标音频...") | |
wav_tgt, _ = librosa.load(tgt_audio, sr=hps.data.sampling_rate) | |
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
if hps.model.use_spk: | |
status_list.append("提取目标音色特征(使用说话人编码器)...") | |
g_tgt = speaker_model.embed_utterance(wav_tgt) | |
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) | |
else: | |
status_list.append("生成目标音频 Mel 频谱图...") | |
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) | |
mel_tgt = mel_spectrogram_torch( | |
wav_tgt, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
# 处理源音频 | |
status_list.append("处理源音频(转换为16kHz)...") | |
wav_src, _ = librosa.load(src_audio, sr=16_000) | |
inputs = hubert_feature_extractor( | |
wav_src, | |
return_tensors="pt", | |
sampling_rate=16_000 | |
).input_values.to(device) | |
status_list.append("提取源音频特征...") | |
c = hubert_model(inputs.float()).last_hidden_state.transpose(1, 2) | |
# 执行转换 | |
status_list.append("执行语音转换...") | |
audio = freevc_model.infer(c, g=g_tgt) if hps.model.use_spk else freevc_model.infer(c, mel=mel_tgt) | |
# 保存结果 | |
status_list.append("保存转换结果...") | |
os.makedirs("output", exist_ok=True) | |
output_path = f"output/{output_name}.wav" | |
write(output_path, hps.data.sampling_rate, audio[0][0].data.cpu().float().numpy()) | |
status_list.append("转换完成") | |
return output_path, "\n".join(status_list) | |
except Exception as e: | |
logger.error(f"转换错误: {str(e)}") | |
status_list.append(f"转换失败: {str(e)}") | |
return None, "\n".join(status_list) | |
# Gradio界面 | |
with gr.Blocks(title="Chinese-FreeVC 语音转换" ,theme='NoCrypt/miku') as app: | |
gr.Markdown("## Chinese-FreeVC 语音转换系统") | |
with gr.Row(): | |
with gr.Column(): | |
src_input = gr.Audio(label="源语音", type="filepath") | |
tgt_input = gr.Audio(label="目标音色", type="filepath") | |
with gr.Row(): # 输出文件名和模型选择在同一排 | |
model_dropdown = gr.Dropdown( | |
choices=list(MODEL_OPTIONS.keys()), | |
label="选择模型", | |
value="Model_17000" | |
) | |
output_name = gr.Textbox(label="输出文件名", value="converted") | |
convert_btn = gr.Button("开始转换", variant="primary") | |
with gr.Column(): | |
output_audio = gr.Audio(label="转换结果", interactive=False) | |
status = gr.Textbox(label="状态", value="待机", interactive=False) | |
convert_btn.click( | |
fn=voice_conversion, | |
inputs=[src_input, tgt_input, output_name, model_dropdown], | |
outputs=[output_audio, status], | |
api_name="convert" | |
) | |
if __name__ == "__main__": | |
app.launch(server_name="0.0.0.0", server_port=7860) |