guetLzy commited on
Commit
963785a
·
verified ·
1 Parent(s): cdf0890

Upload 9 files

Browse files
Files changed (9) hide show
  1. attentions.py +326 -0
  2. commons.py +161 -0
  3. data_utils.py +551 -0
  4. mel_processing.py +150 -0
  5. models.py +1147 -0
  6. modules.py +390 -0
  7. pqmf.py +116 -0
  8. transforms.py +193 -0
  9. utils.py +359 -0
attentions.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+ import logging
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+ class Encoder(nn.Module):
16
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
17
+ super().__init__()
18
+ self.hidden_channels = hidden_channels
19
+ self.filter_channels = filter_channels
20
+ self.n_heads = n_heads
21
+ self.n_layers = n_layers
22
+ self.kernel_size = kernel_size
23
+ self.p_dropout = p_dropout
24
+ self.window_size = window_size
25
+
26
+ # bert-vits2
27
+ # self.cond_layer_idx = self.n_layers
28
+ # if "gin_channels" in kwargs:
29
+ # self.gin_channels = kwargs["gin_channels"]
30
+ # if self.gin_channels != 0:
31
+ # self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
32
+ # # vits2 says 3rd block, so idx is 2 by default
33
+ # self.cond_layer_idx = (
34
+ # kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
35
+ # )
36
+ # logging.debug(self.gin_channels, self.cond_layer_idx)
37
+ # assert (
38
+ # self.cond_layer_idx < self.n_layers
39
+ # ), "cond_layer_idx should be less than n_layers"
40
+
41
+ self.drop = nn.Dropout(p_dropout)
42
+ self.attn_layers = nn.ModuleList()
43
+ self.norm_layers_1 = nn.ModuleList()
44
+ self.ffn_layers = nn.ModuleList()
45
+ self.norm_layers_2 = nn.ModuleList()
46
+ for i in range(self.n_layers):
47
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
48
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
49
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
50
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
51
+
52
+ def forward(self, x, x_mask,g=None):
53
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
54
+ x = x * x_mask
55
+ for i in range(self.n_layers):
56
+ # vits2
57
+ # if i == self.cond_layer_idx and g is not None:
58
+ # g = self.spk_emb_linear(g.transpose(1, 2))
59
+ # g = g.transpose(1, 2)
60
+ # x = x + g
61
+ # x = x * x_mask
62
+ y = self.attn_layers[i](x, x, attn_mask)
63
+ y = self.drop(y)
64
+ x = self.norm_layers_1[i](x + y)
65
+
66
+ y = self.ffn_layers[i](x, x_mask)
67
+ y = self.drop(y)
68
+ x = self.norm_layers_2[i](x + y)
69
+ x = x * x_mask
70
+ return x
71
+
72
+
73
+ class Decoder(nn.Module):
74
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
75
+ super().__init__()
76
+ self.hidden_channels = hidden_channels
77
+ self.filter_channels = filter_channels
78
+ self.n_heads = n_heads
79
+ self.n_layers = n_layers
80
+ self.kernel_size = kernel_size
81
+ self.p_dropout = p_dropout
82
+ self.proximal_bias = proximal_bias
83
+ self.proximal_init = proximal_init
84
+
85
+ self.drop = nn.Dropout(p_dropout)
86
+ self.self_attn_layers = nn.ModuleList()
87
+ self.norm_layers_0 = nn.ModuleList()
88
+ self.encdec_attn_layers = nn.ModuleList()
89
+ self.norm_layers_1 = nn.ModuleList()
90
+ self.ffn_layers = nn.ModuleList()
91
+ self.norm_layers_2 = nn.ModuleList()
92
+ for i in range(self.n_layers):
93
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
94
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
95
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
96
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
97
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
98
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
99
+
100
+ def forward(self, x, x_mask, h, h_mask):
101
+ """
102
+ x: decoder input
103
+ h: encoder output
104
+ """
105
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
106
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
107
+ x = x * x_mask
108
+ for i in range(self.n_layers):
109
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
110
+ y = self.drop(y)
111
+ x = self.norm_layers_0[i](x + y)
112
+
113
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
114
+ y = self.drop(y)
115
+ x = self.norm_layers_1[i](x + y)
116
+
117
+ y = self.ffn_layers[i](x, x_mask)
118
+ y = self.drop(y)
119
+ x = self.norm_layers_2[i](x + y)
120
+ x = x * x_mask
121
+ return x
122
+
123
+
124
+ class MultiHeadAttention(nn.Module):
125
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
126
+ super().__init__()
127
+ assert channels % n_heads == 0
128
+
129
+ self.channels = channels
130
+ self.out_channels = out_channels
131
+ self.n_heads = n_heads
132
+ self.p_dropout = p_dropout
133
+ self.window_size = window_size
134
+ self.heads_share = heads_share
135
+ self.block_length = block_length
136
+ self.proximal_bias = proximal_bias
137
+ self.proximal_init = proximal_init
138
+ self.attn = None
139
+
140
+ self.k_channels = channels // n_heads
141
+ self.conv_q = nn.Conv1d(channels, channels, 1)
142
+ self.conv_k = nn.Conv1d(channels, channels, 1)
143
+ self.conv_v = nn.Conv1d(channels, channels, 1)
144
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
145
+ self.drop = nn.Dropout(p_dropout)
146
+
147
+ if window_size is not None:
148
+ n_heads_rel = 1 if heads_share else n_heads
149
+ rel_stddev = self.k_channels**-0.5
150
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
151
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
152
+
153
+ nn.init.xavier_uniform_(self.conv_q.weight)
154
+ nn.init.xavier_uniform_(self.conv_k.weight)
155
+ nn.init.xavier_uniform_(self.conv_v.weight)
156
+ if proximal_init:
157
+ with torch.no_grad():
158
+ self.conv_k.weight.copy_(self.conv_q.weight)
159
+ self.conv_k.bias.copy_(self.conv_q.bias)
160
+
161
+ def forward(self, x, c, attn_mask=None):
162
+ q = self.conv_q(x)
163
+ k = self.conv_k(c)
164
+ v = self.conv_v(c)
165
+
166
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
167
+
168
+ x = self.conv_o(x)
169
+ return x
170
+
171
+ def attention(self, query, key, value, mask=None):
172
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
173
+ b, d, t_s, t_t = (*key.size(), query.size(2))
174
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
175
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
176
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
177
+
178
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
179
+ if self.window_size is not None:
180
+ assert t_s == t_t, "Relative attention is only available for self-attention."
181
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
182
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
183
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
184
+ scores = scores + scores_local
185
+ if self.proximal_bias:
186
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
187
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
188
+ if mask is not None:
189
+ scores = scores.masked_fill(mask == 0, -1e4)
190
+ if self.block_length is not None:
191
+ assert t_s == t_t, "Local attention is only available for self-attention."
192
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
193
+ scores = scores.masked_fill(block_mask == 0, -1e4)
194
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
195
+ p_attn = self.drop(p_attn)
196
+ output = torch.matmul(p_attn, value)
197
+ if self.window_size is not None:
198
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
199
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
200
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
201
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
202
+ return output, p_attn
203
+
204
+ def _matmul_with_relative_values(self, x, y):
205
+ """
206
+ x: [b, h, l, m]
207
+ y: [h or 1, m, d]
208
+ ret: [b, h, l, d]
209
+ """
210
+ ret = torch.matmul(x, y.unsqueeze(0))
211
+ return ret
212
+
213
+ def _matmul_with_relative_keys(self, x, y):
214
+ """
215
+ x: [b, h, l, d]
216
+ y: [h or 1, m, d]
217
+ ret: [b, h, l, m]
218
+ """
219
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
220
+ return ret
221
+
222
+ def _get_relative_embeddings(self, relative_embeddings, length):
223
+ max_relative_position = 2 * self.window_size + 1
224
+ # Pad first before slice to avoid using cond ops.
225
+ pad_length = max(length - (self.window_size + 1), 0)
226
+ slice_start_position = max((self.window_size + 1) - length, 0)
227
+ slice_end_position = slice_start_position + 2 * length - 1
228
+ if pad_length > 0:
229
+ padded_relative_embeddings = F.pad(
230
+ relative_embeddings,
231
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
232
+ else:
233
+ padded_relative_embeddings = relative_embeddings
234
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
235
+ return used_relative_embeddings
236
+
237
+ def _relative_position_to_absolute_position(self, x):
238
+ """
239
+ x: [b, h, l, 2*l-1]
240
+ ret: [b, h, l, l]
241
+ """
242
+ batch, heads, length, _ = x.size()
243
+ # Concat columns of pad to shift from relative to absolute indexing.
244
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
245
+
246
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
247
+ x_flat = x.view([batch, heads, length * 2 * length])
248
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
249
+
250
+ # Reshape and slice out the padded elements.
251
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
252
+ return x_final
253
+
254
+ def _absolute_position_to_relative_position(self, x):
255
+ """
256
+ x: [b, h, l, l]
257
+ ret: [b, h, l, 2*l-1]
258
+ """
259
+ batch, heads, length, _ = x.size()
260
+ # padd along column
261
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
262
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
263
+ # add 0's in the beginning that will skew the elements after reshape
264
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
265
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
266
+ return x_final
267
+
268
+ def _attention_bias_proximal(self, length):
269
+ """Bias for self-attention to encourage attention to close positions.
270
+ Args:
271
+ length: an integer scalar.
272
+ Returns:
273
+ a Tensor with shape [1, 1, length, length]
274
+ """
275
+ r = torch.arange(length, dtype=torch.float32)
276
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
277
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
278
+
279
+
280
+ class FFN(nn.Module):
281
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
282
+ super().__init__()
283
+ self.in_channels = in_channels
284
+ self.out_channels = out_channels
285
+ self.filter_channels = filter_channels
286
+ self.kernel_size = kernel_size
287
+ self.p_dropout = p_dropout
288
+ self.activation = activation
289
+ self.causal = causal
290
+
291
+ if causal:
292
+ self.padding = self._causal_padding
293
+ else:
294
+ self.padding = self._same_padding
295
+
296
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
297
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
298
+ self.drop = nn.Dropout(p_dropout)
299
+
300
+ def forward(self, x, x_mask):
301
+ x = self.conv_1(self.padding(x * x_mask))
302
+ if self.activation == "gelu":
303
+ x = x * torch.sigmoid(1.702 * x)
304
+ else:
305
+ x = torch.relu(x)
306
+ x = self.drop(x)
307
+ x = self.conv_2(self.padding(x * x_mask))
308
+ return x * x_mask
309
+
310
+ def _causal_padding(self, x):
311
+ if self.kernel_size == 1:
312
+ return x
313
+ pad_l = self.kernel_size - 1
314
+ pad_r = 0
315
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
316
+ x = F.pad(x, commons.convert_pad_shape(padding))
317
+ return x
318
+
319
+ def _same_padding(self, x):
320
+ if self.kernel_size == 1:
321
+ return x
322
+ pad_l = (self.kernel_size - 1) // 2
323
+ pad_r = self.kernel_size // 2
324
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
325
+ x = F.pad(x, commons.convert_pad_shape(padding))
326
+ return x
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
data_utils.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+ from loguru import logger
8
+ import commons
9
+ from mel_processing import spectrogram_torch, mel_spectrogram_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import cleaned_text_to_sequence, get_bert
12
+ from text.cleaner import clean_text
13
+ from tqdm import tqdm
14
+
15
+
16
+ class TextAudioLoader(torch.utils.data.Dataset):
17
+ """
18
+ 1) loads audio, text pairs
19
+ 2) normalizes text and converts them to sequences of integers
20
+ 3) computes spectrograms from audio files.
21
+ """
22
+
23
+ def __init__(self, audiopaths_and_text, hparams):
24
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
25
+ self.max_wav_value = hparams.max_wav_value
26
+ self.sampling_rate = hparams.sampling_rate
27
+ self.filter_length = hparams.filter_length
28
+ self.hop_length = hparams.hop_length
29
+ self.win_length = hparams.win_length
30
+ self.sampling_rate = hparams.sampling_rate
31
+
32
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
33
+
34
+ self.add_blank = hparams.add_blank
35
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
36
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
37
+
38
+ random.seed(1234)
39
+ random.shuffle(self.audiopaths_and_text)
40
+ self._filter()
41
+
42
+ def _filter(self):
43
+ """
44
+ Filter text & store spec lengths
45
+ """
46
+ # Store spectrogram lengths for Bucketing
47
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
48
+ # spec_length = wav_length // hop_length
49
+
50
+ audiopaths_and_text_new = []
51
+ lengths = []
52
+ for audiopath, text in self.audiopaths_and_text:
53
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
54
+ audiopaths_and_text_new.append([audiopath, text])
55
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
56
+ self.audiopaths_and_text = audiopaths_and_text_new
57
+ self.lengths = lengths
58
+
59
+ def get_audio_text_pair(self, audiopath_and_text):
60
+ # separate filename and text
61
+ audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
62
+ text = self.get_text(text)
63
+ spec, wav = self.get_audio(audiopath)
64
+ return (text, spec, wav)
65
+
66
+ def get_audio(self, filename):
67
+ audio, sampling_rate = load_wav_to_torch(filename)
68
+ if sampling_rate != self.sampling_rate:
69
+ raise ValueError(
70
+ "{} {} SR doesn't match target {} SR".format(
71
+ sampling_rate, self.sampling_rate
72
+ )
73
+ )
74
+ audio_norm = audio / self.max_wav_value
75
+ audio_norm = audio_norm.unsqueeze(0)
76
+ spec_filename = filename.replace(".wav", ".spec.pt")
77
+ if os.path.exists(spec_filename):
78
+ spec = torch.load(spec_filename)
79
+ else:
80
+ spec = spectrogram_torch(
81
+ audio_norm,
82
+ self.filter_length,
83
+ self.sampling_rate,
84
+ self.hop_length,
85
+ self.win_length,
86
+ center=False,
87
+ )
88
+ spec = torch.squeeze(spec, 0)
89
+ torch.save(spec, spec_filename)
90
+ return spec, audio_norm
91
+
92
+ def get_text(self, text):
93
+ if self.cleaned_text:
94
+ text_norm = cleaned_text_to_sequence(text)
95
+ else:
96
+ text_norm = text_to_sequence(text, self.text_cleaners)
97
+ if self.add_blank:
98
+ text_norm = commons.intersperse(text_norm, 0)
99
+ text_norm = torch.LongTensor(text_norm)
100
+ return text_norm
101
+
102
+ def __getitem__(self, index):
103
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
104
+
105
+ def __len__(self):
106
+ return len(self.audiopaths_and_text)
107
+
108
+
109
+ class TextAudioCollate:
110
+ """Zero-pads model inputs and targets"""
111
+
112
+ def __init__(self, return_ids=False):
113
+ self.return_ids = return_ids
114
+
115
+ def __call__(self, batch):
116
+ """Collate's training batch from normalized text and aduio
117
+ PARAMS
118
+ ------
119
+ batch: [text_normalized, spec_normalized, wav_normalized]
120
+ """
121
+ # Right zero-pad all one-hot text sequences to max input length
122
+ _, ids_sorted_decreasing = torch.sort(
123
+ torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
124
+ )
125
+
126
+ max_text_len = max([len(x[0]) for x in batch])
127
+ max_spec_len = max([x[1].size(1) for x in batch])
128
+ max_wav_len = max([x[2].size(1) for x in batch])
129
+
130
+ text_lengths = torch.LongTensor(len(batch))
131
+ spec_lengths = torch.LongTensor(len(batch))
132
+ wav_lengths = torch.LongTensor(len(batch))
133
+
134
+ text_padded = torch.LongTensor(len(batch), max_text_len)
135
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
136
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
137
+ text_padded.zero_()
138
+ spec_padded.zero_()
139
+ wav_padded.zero_()
140
+ for i in range(len(ids_sorted_decreasing)):
141
+ row = batch[ids_sorted_decreasing[i]]
142
+
143
+ text = row[0]
144
+ text_padded[i, : text.size(0)] = text
145
+ text_lengths[i] = text.size(0)
146
+
147
+ spec = row[1]
148
+ spec_padded[i, :, : spec.size(1)] = spec
149
+ spec_lengths[i] = spec.size(1)
150
+
151
+ wav = row[2]
152
+ wav_padded[i, :, : wav.size(1)] = wav
153
+ wav_lengths[i] = wav.size(1)
154
+
155
+ if self.return_ids:
156
+ return (
157
+ text_padded,
158
+ text_lengths,
159
+ spec_padded,
160
+ spec_lengths,
161
+ wav_padded,
162
+ wav_lengths,
163
+ ids_sorted_decreasing,
164
+ )
165
+ return (
166
+ text_padded,
167
+ text_lengths,
168
+ spec_padded,
169
+ spec_lengths,
170
+ wav_padded,
171
+ wav_lengths,
172
+ )
173
+
174
+
175
+ """Multi speaker version"""
176
+
177
+
178
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
179
+ """
180
+ 1) loads audio, speaker_id, text pairs
181
+ 2) normalizes text and converts them to sequences of integers
182
+ 3) computes spectrograms from audio files.
183
+ """
184
+
185
+ def __init__(self, audiopaths_sid_text, hparams):
186
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
187
+ self.max_wav_value = hparams.max_wav_value
188
+ self.sampling_rate = hparams.sampling_rate
189
+ self.filter_length = hparams.filter_length
190
+ self.hop_length = hparams.hop_length
191
+ self.win_length = hparams.win_length
192
+ self.sampling_rate = hparams.sampling_rate
193
+ self.spk_map = hparams.spk2id
194
+ self.hparams = hparams
195
+ self.use_bert = hparams.use_bert
196
+ self.use_melorspec = False
197
+
198
+ self.use_mel_spec_posterior = getattr(
199
+ hparams, "use_mel_posterior_encoder", False
200
+ )
201
+ if self.use_mel_spec_posterior:
202
+ self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
203
+
204
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
205
+
206
+ self.add_blank = hparams.add_blank
207
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
208
+ self.max_text_len = getattr(hparams, "max_text_len", 300)
209
+
210
+ random.seed(1234)
211
+ random.shuffle(self.audiopaths_sid_text)
212
+ self._filter()
213
+
214
+ def _filter(self):
215
+ """
216
+ Filter text & store spec lengths
217
+ """
218
+ # Store spectrogram lengths for Bucketing
219
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
220
+ # spec_length = wav_length // hop_length
221
+
222
+ audiopaths_sid_text_new = []
223
+ lengths = []
224
+ skipped = 0
225
+ logger.info("Init dataset...")
226
+ for _id, spk, language, text, phones, tone, word2ph in tqdm(
227
+ self.audiopaths_sid_text
228
+ ):
229
+ audiopath = f"{_id}"
230
+ if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
231
+ phones = phones.split(" ")
232
+ tone = [int(i) for i in tone.split(" ")]
233
+ word2ph = [int(i) for i in word2ph.split(" ")]
234
+ audiopaths_sid_text_new.append(
235
+ [audiopath, spk, language, text, phones, tone, word2ph]
236
+ )
237
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
238
+ else:
239
+ skipped += 1
240
+ logger.info(
241
+ "skipped: "
242
+ + str(skipped)
243
+ + ", total: "
244
+ + str(len(self.audiopaths_sid_text))
245
+ )
246
+ self.audiopaths_sid_text = audiopaths_sid_text_new
247
+ self.lengths = lengths
248
+
249
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
250
+ # separate filename, speaker_id and text
251
+ audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
252
+
253
+ bert, phones, tone, language = self.get_text(
254
+ text, word2ph, phones, tone, language, audiopath
255
+ )
256
+
257
+ spec, wav = self.get_audio(audiopath)
258
+ sid = torch.LongTensor([int(self.spk_map[sid])])
259
+ return (phones, spec, wav, sid, tone, language, bert)
260
+
261
+ def get_audio(self, filename):
262
+ audio, sampling_rate = load_wav_to_torch(filename)
263
+ if sampling_rate != self.sampling_rate:
264
+ raise ValueError(
265
+ "{} {} SR doesn't match target {} SR".format(
266
+ filename, sampling_rate, self.sampling_rate
267
+ )
268
+ )
269
+ audio_norm = audio / self.max_wav_value
270
+ audio_norm = audio_norm.unsqueeze(0)
271
+ spec_filename = filename.replace(".wav", ".spec.pt")
272
+ if os.path.exists(spec_filename):
273
+ spec = torch.load(spec_filename)
274
+ else:
275
+ spec = spectrogram_torch(
276
+ audio_norm,
277
+ self.filter_length,
278
+ self.sampling_rate,
279
+ self.hop_length,
280
+ self.win_length,
281
+ center=False,
282
+ )
283
+ spec = torch.squeeze(spec, 0)
284
+ torch.save(spec, spec_filename)
285
+ return spec, audio_norm
286
+
287
+ def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
288
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
289
+ if self.add_blank:
290
+ phone = commons.intersperse(phone, 0)
291
+ tone = commons.intersperse(tone, 0)
292
+ language = commons.intersperse(language, 0)
293
+ for i in range(len(word2ph)):
294
+ word2ph[i] = word2ph[i] * 2
295
+ word2ph[0] += 1
296
+ bert_path = wav_path.replace(".wav", ".bert.pt")
297
+ try:
298
+ bert = torch.load(bert_path)
299
+ assert bert.shape[-1] == len(phone)
300
+ except:
301
+ bert = get_bert(text, word2ph, language_str)
302
+ torch.save(bert, bert_path)
303
+ assert bert.shape[-1] == len(phone), phone
304
+
305
+ if self.use_bert:
306
+ if language_str == "ZH":
307
+ bert = bert
308
+ else:
309
+ bert = torch.zeros(1024, len(phone))
310
+ else:
311
+ bert = torch.zeros(1024, len(phone))
312
+ assert bert.shape[-1] == len(phone), (
313
+ bert.shape,
314
+ len(phone),
315
+ sum(word2ph),
316
+ p1,
317
+ p2,
318
+ t1,
319
+ t2,
320
+ pold,
321
+ pold2,
322
+ word2ph,
323
+ text,
324
+ w2pho,
325
+ )
326
+ phone = torch.LongTensor(phone)
327
+ tone = torch.LongTensor(tone)
328
+ language = torch.LongTensor(language)
329
+ return bert, phone, tone, language
330
+
331
+ def get_sid(self, sid):
332
+ sid = torch.LongTensor([int(sid)])
333
+ return sid
334
+
335
+ def __getitem__(self, index):
336
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
337
+
338
+ def __len__(self):
339
+ return len(self.audiopaths_sid_text)
340
+
341
+
342
+ class TextAudioSpeakerCollate:
343
+ """Zero-pads model inputs and targets"""
344
+
345
+ def __init__(self, return_ids=False):
346
+ self.return_ids = return_ids
347
+
348
+ def __call__(self, batch):
349
+ """Collate's training batch from normalized text, audio and speaker identities
350
+ PARAMS
351
+ ------
352
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
353
+ """
354
+ # Right zero-pad all one-hot text sequences to max input length
355
+ _, ids_sorted_decreasing = torch.sort(
356
+ torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
357
+ )
358
+
359
+ max_text_len = max([len(x[0]) for x in batch])
360
+ max_spec_len = max([x[1].size(1) for x in batch])
361
+ max_wav_len = max([x[2].size(1) for x in batch])
362
+
363
+ text_lengths = torch.LongTensor(len(batch))
364
+ spec_lengths = torch.LongTensor(len(batch))
365
+ wav_lengths = torch.LongTensor(len(batch))
366
+ sid = torch.LongTensor(len(batch))
367
+
368
+ text_padded = torch.LongTensor(len(batch), max_text_len)
369
+ tone_padded = torch.LongTensor(len(batch), max_text_len)
370
+ language_padded = torch.LongTensor(len(batch), max_text_len)
371
+ bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
372
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
373
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
374
+
375
+ text_padded.zero_()
376
+ tone_padded.zero_()
377
+ language_padded.zero_()
378
+ spec_padded.zero_()
379
+ wav_padded.zero_()
380
+ bert_padded.zero_()
381
+ for i in range(len(ids_sorted_decreasing)):
382
+ row = batch[ids_sorted_decreasing[i]]
383
+
384
+ text = row[0]
385
+ text_padded[i, : text.size(0)] = text
386
+ text_lengths[i] = text.size(0)
387
+
388
+ spec = row[1]
389
+ spec_padded[i, :, : spec.size(1)] = spec
390
+ spec_lengths[i] = spec.size(1)
391
+
392
+ wav = row[2]
393
+ wav_padded[i, :, : wav.size(1)] = wav
394
+ wav_lengths[i] = wav.size(1)
395
+
396
+ sid[i] = row[3]
397
+
398
+ tone = row[4]
399
+ tone_padded[i, : tone.size(0)] = tone
400
+
401
+ language = row[5]
402
+ language_padded[i, : language.size(0)] = language
403
+
404
+ bert = row[6]
405
+ bert_padded[i, :, : bert.size(1)] = bert
406
+
407
+ if self.return_ids:
408
+ return (
409
+ text_padded,
410
+ text_lengths,
411
+ spec_padded,
412
+ spec_lengths,
413
+ wav_padded,
414
+ wav_lengths,
415
+ sid,
416
+ tone_padded,
417
+ language_padded,
418
+ bert_padded,
419
+ ids_sorted_decreasing,
420
+ )
421
+ return (
422
+ text_padded,
423
+ text_lengths,
424
+ spec_padded,
425
+ spec_lengths,
426
+ wav_padded,
427
+ wav_lengths,
428
+ sid,
429
+ tone_padded,
430
+ language_padded,
431
+ bert_padded,
432
+ )
433
+
434
+
435
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
436
+ """
437
+ Maintain similar input lengths in a batch.
438
+ Length groups are specified by boundaries.
439
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
440
+
441
+ It removes samples which are not included in the boundaries.
442
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
443
+ """
444
+
445
+ def __init__(
446
+ self,
447
+ dataset,
448
+ batch_size,
449
+ boundaries,
450
+ num_replicas=None,
451
+ rank=None,
452
+ shuffle=True,
453
+ ):
454
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
455
+ self.lengths = dataset.lengths
456
+ self.batch_size = batch_size
457
+ self.boundaries = boundaries
458
+
459
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
460
+ self.total_size = sum(self.num_samples_per_bucket)
461
+ self.num_samples = self.total_size // self.num_replicas
462
+
463
+ def _create_buckets(self):
464
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
465
+ for i in range(len(self.lengths)):
466
+ length = self.lengths[i]
467
+ idx_bucket = self._bisect(length)
468
+ if idx_bucket != -1:
469
+ buckets[idx_bucket].append(i)
470
+
471
+ for i in range(len(buckets) - 1, 0, -1):
472
+ if len(buckets[i]) == 0:
473
+ buckets.pop(i)
474
+ self.boundaries.pop(i + 1)
475
+
476
+ num_samples_per_bucket = []
477
+ for i in range(len(buckets)):
478
+ len_bucket = len(buckets[i])
479
+ total_batch_size = self.num_replicas * self.batch_size
480
+ rem = (
481
+ total_batch_size - (len_bucket % total_batch_size)
482
+ ) % total_batch_size
483
+ num_samples_per_bucket.append(len_bucket + rem)
484
+ return buckets, num_samples_per_bucket
485
+
486
+ def __iter__(self):
487
+ # deterministically shuffle based on epoch
488
+ g = torch.Generator()
489
+ g.manual_seed(self.epoch)
490
+
491
+ indices = []
492
+ if self.shuffle:
493
+ for bucket in self.buckets:
494
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
495
+ else:
496
+ for bucket in self.buckets:
497
+ indices.append(list(range(len(bucket))))
498
+
499
+ batches = []
500
+ for i in range(len(self.buckets)):
501
+ bucket = self.buckets[i]
502
+ len_bucket = len(bucket)
503
+ ids_bucket = indices[i]
504
+ num_samples_bucket = self.num_samples_per_bucket[i]
505
+
506
+ # add extra samples to make it evenly divisible
507
+ rem = num_samples_bucket - len_bucket
508
+ ids_bucket = (
509
+ ids_bucket
510
+ + ids_bucket * (rem // len_bucket)
511
+ + ids_bucket[: (rem % len_bucket)]
512
+ )
513
+
514
+ # subsample
515
+ ids_bucket = ids_bucket[self.rank :: self.num_replicas]
516
+
517
+ # batching
518
+ for j in range(len(ids_bucket) // self.batch_size):
519
+ batch = [
520
+ bucket[idx]
521
+ for idx in ids_bucket[
522
+ j * self.batch_size : (j + 1) * self.batch_size
523
+ ]
524
+ ]
525
+ batches.append(batch)
526
+
527
+ if self.shuffle:
528
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
529
+ batches = [batches[i] for i in batch_ids]
530
+ self.batches = batches
531
+
532
+ assert len(self.batches) * self.batch_size == self.num_samples
533
+ return iter(self.batches)
534
+
535
+ def _bisect(self, x, lo=0, hi=None):
536
+ if hi is None:
537
+ hi = len(self.boundaries) - 1
538
+
539
+ if hi > lo:
540
+ mid = (hi + lo) // 2
541
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
542
+ return mid
543
+ elif x <= self.boundaries[mid]:
544
+ return self._bisect(x, lo, mid)
545
+ else:
546
+ return self._bisect(x, mid + 1, hi)
547
+ else:
548
+ return -1
549
+
550
+ def __len__(self):
551
+ return self.num_samples // self.batch_size
mel_processing.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.0:
53
+ print("min value is ", torch.min(y))
54
+ if torch.max(y) > 1.0:
55
+ print("max value is ", torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + "_" + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
62
+ dtype=y.dtype, device=y.device
63
+ )
64
+
65
+ y = torch.nn.functional.pad(
66
+ y.unsqueeze(1),
67
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
68
+ mode="reflect",
69
+ )
70
+ y = y.squeeze(1)
71
+
72
+ spec = torch.stft(
73
+ y,
74
+ n_fft,
75
+ hop_length=hop_size,
76
+ win_length=win_size,
77
+ window=hann_window[wnsize_dtype_device],
78
+ center=center,
79
+ pad_mode="reflect",
80
+ normalized=False,
81
+ onesided=True,
82
+ return_complex=False,
83
+ )
84
+
85
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
86
+ return spec
87
+
88
+
89
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
90
+ global mel_basis
91
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
92
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
93
+ if fmax_dtype_device not in mel_basis:
94
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
95
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
96
+ dtype=spec.dtype, device=spec.device
97
+ )
98
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
99
+ spec = spectral_normalize_torch(spec)
100
+ return spec
101
+
102
+
103
+ def mel_spectrogram_torch(
104
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
105
+ ):
106
+ if torch.min(y) < -1.0:
107
+ print("min value is ", torch.min(y))
108
+ if torch.max(y) > 1.0:
109
+ print("max value is ", torch.max(y))
110
+
111
+ global mel_basis, hann_window
112
+ dtype_device = str(y.dtype) + "_" + str(y.device)
113
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
114
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
115
+ if fmax_dtype_device not in mel_basis:
116
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
117
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
118
+ dtype=y.dtype, device=y.device
119
+ )
120
+ if wnsize_dtype_device not in hann_window:
121
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
122
+ dtype=y.dtype, device=y.device
123
+ )
124
+
125
+ y = torch.nn.functional.pad(
126
+ y.unsqueeze(1),
127
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
128
+ mode="reflect",
129
+ )
130
+ y = y.squeeze(1)
131
+
132
+ spec = torch.stft(
133
+ y,
134
+ n_fft,
135
+ hop_length=hop_size,
136
+ win_length=win_size,
137
+ window=hann_window[wnsize_dtype_device],
138
+ center=center,
139
+ pad_mode="reflect",
140
+ normalized=False,
141
+ onesided=True,
142
+ return_complex=False,
143
+ )
144
+
145
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
146
+
147
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
148
+ spec = spectral_normalize_torch(spec)
149
+
150
+ return spec
models.py ADDED
@@ -0,0 +1,1147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+ from pqmf import PQMF
16
+ from stft import TorchSTFT
17
+ import math
18
+ from text import symbols, num_tones, num_languages
19
+
20
+
21
+ class StochasticDurationPredictor(nn.Module):
22
+ def __init__(
23
+ self,
24
+ in_channels,
25
+ filter_channels,
26
+ kernel_size,
27
+ p_dropout,
28
+ n_flows=4,
29
+ gin_channels=0,
30
+ ):
31
+ super().__init__()
32
+ filter_channels = in_channels # it needs to be removed from future version.
33
+ self.in_channels = in_channels
34
+ self.filter_channels = filter_channels
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.n_flows = n_flows
38
+ self.gin_channels = gin_channels
39
+
40
+ self.log_flow = modules.Log()
41
+ self.flows = nn.ModuleList()
42
+ self.flows.append(modules.ElementwiseAffine(2))
43
+ for i in range(n_flows):
44
+ self.flows.append(
45
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
46
+ )
47
+ self.flows.append(modules.Flip())
48
+
49
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
50
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
51
+ self.post_convs = modules.DDSConv(
52
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
53
+ )
54
+ self.post_flows = nn.ModuleList()
55
+ self.post_flows.append(modules.ElementwiseAffine(2))
56
+ for i in range(4):
57
+ self.post_flows.append(
58
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
59
+ )
60
+ self.post_flows.append(modules.Flip())
61
+
62
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
63
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
64
+ self.convs = modules.DDSConv(
65
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
66
+ )
67
+ if gin_channels != 0:
68
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
69
+
70
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
71
+ x = torch.detach(x)
72
+ x = self.pre(x)
73
+ if g is not None:
74
+ g = torch.detach(g)
75
+ x = x + self.cond(g)
76
+ x = self.convs(x, x_mask)
77
+ x = self.proj(x) * x_mask
78
+
79
+ if not reverse:
80
+ flows = self.flows
81
+ assert w is not None
82
+
83
+ logdet_tot_q = 0
84
+ h_w = self.post_pre(w)
85
+ h_w = self.post_convs(h_w, x_mask)
86
+ h_w = self.post_proj(h_w) * x_mask
87
+ e_q = (
88
+ torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
89
+ * x_mask
90
+ )
91
+ z_q = e_q
92
+ for flow in self.post_flows:
93
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
94
+ logdet_tot_q += logdet_q
95
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
96
+ u = torch.sigmoid(z_u) * x_mask
97
+ z0 = (w - u) * x_mask
98
+ logdet_tot_q += torch.sum(
99
+ (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
100
+ )
101
+ logq = (
102
+ torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
103
+ - logdet_tot_q
104
+ )
105
+
106
+ logdet_tot = 0
107
+ z0, logdet = self.log_flow(z0, x_mask)
108
+ logdet_tot += logdet
109
+ z = torch.cat([z0, z1], 1)
110
+ for flow in flows:
111
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
112
+ logdet_tot = logdet_tot + logdet
113
+ nll = (
114
+ torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
115
+ - logdet_tot
116
+ )
117
+ return nll + logq # [b]
118
+ else:
119
+ flows = list(reversed(self.flows))
120
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
121
+ z = (
122
+ torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
123
+ * noise_scale
124
+ )
125
+ for flow in flows:
126
+ z = flow(z, x_mask, g=x, reverse=reverse)
127
+ z0, z1 = torch.split(z, [1, 1], 1)
128
+ logw = z0
129
+ return logw
130
+
131
+
132
+ class DurationPredictor(nn.Module):
133
+ def __init__(
134
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
135
+ ):
136
+ super().__init__()
137
+
138
+ self.in_channels = in_channels
139
+ self.filter_channels = filter_channels
140
+ self.kernel_size = kernel_size
141
+ self.p_dropout = p_dropout
142
+ self.gin_channels = gin_channels
143
+
144
+ self.drop = nn.Dropout(p_dropout)
145
+ self.conv_1 = nn.Conv1d(
146
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
147
+ )
148
+ self.norm_1 = modules.LayerNorm(filter_channels)
149
+ self.conv_2 = nn.Conv1d(
150
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
151
+ )
152
+ self.norm_2 = modules.LayerNorm(filter_channels)
153
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
154
+
155
+ if gin_channels != 0:
156
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
157
+
158
+ def forward(self, x, x_mask, g=None):
159
+ x = torch.detach(x)
160
+ if g is not None:
161
+ g = torch.detach(g)
162
+ x = x + self.cond(g)
163
+ x = self.conv_1(x * x_mask)
164
+ x = torch.relu(x)
165
+ x = self.norm_1(x)
166
+ x = self.drop(x)
167
+ x = self.conv_2(x * x_mask)
168
+ x = torch.relu(x)
169
+ x = self.norm_2(x)
170
+ x = self.drop(x)
171
+ x = self.proj(x * x_mask)
172
+ return x * x_mask
173
+
174
+
175
+ class TextEncoder(nn.Module):
176
+ def __init__(
177
+ self,
178
+ n_vocab,
179
+ out_channels,
180
+ hidden_channels,
181
+ filter_channels,
182
+ n_heads,
183
+ n_layers,
184
+ kernel_size,
185
+ p_dropout,
186
+ ):
187
+ super().__init__()
188
+ self.n_vocab = n_vocab
189
+ self.out_channels = out_channels
190
+ self.hidden_channels = hidden_channels
191
+ self.filter_channels = filter_channels
192
+ self.n_heads = n_heads
193
+ self.n_layers = n_layers
194
+ self.kernel_size = kernel_size
195
+ self.p_dropout = p_dropout
196
+
197
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
198
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
199
+ self.tone_emb = nn.Embedding(num_tones, hidden_channels)
200
+ nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
201
+ self.language_emb = nn.Embedding(num_languages, hidden_channels)
202
+ nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
203
+ self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
204
+
205
+ self.encoder = attentions.Encoder(
206
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
207
+ )
208
+
209
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
210
+
211
+ def forward(self, x, x_lengths, tone, language, bert, g=None):
212
+ bert_emb = self.bert_proj(bert).transpose(1, 2)
213
+ x = (
214
+ self.emb(x) + self.tone_emb(tone) + self.language_emb(language) + bert_emb
215
+ ) * math.sqrt(
216
+ self.hidden_channels
217
+ ) # [b, t, h]
218
+ x = torch.transpose(x, 1, -1) # [b, h, t]
219
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
220
+ x.dtype
221
+ )
222
+
223
+ x = self.encoder(x * x_mask, x_mask, g=g)
224
+ stats = self.proj(x) * x_mask
225
+
226
+ m, logs = torch.split(stats, self.out_channels, dim=1)
227
+ return x, m, logs, x_mask
228
+
229
+
230
+ class ResidualCouplingBlock(nn.Module):
231
+ def __init__(
232
+ self,
233
+ channels,
234
+ hidden_channels,
235
+ kernel_size,
236
+ dilation_rate,
237
+ n_layers,
238
+ n_flows=4,
239
+ gin_channels=0,
240
+ ):
241
+ super().__init__()
242
+ self.channels = channels
243
+ self.hidden_channels = hidden_channels
244
+ self.kernel_size = kernel_size
245
+ self.dilation_rate = dilation_rate
246
+ self.n_layers = n_layers
247
+ self.n_flows = n_flows
248
+ self.gin_channels = gin_channels
249
+
250
+ self.flows = nn.ModuleList()
251
+ for i in range(n_flows):
252
+ self.flows.append(
253
+ modules.ResidualCouplingLayer(
254
+ channels,
255
+ hidden_channels,
256
+ kernel_size,
257
+ dilation_rate,
258
+ n_layers,
259
+ gin_channels=gin_channels,
260
+ mean_only=True,
261
+ )
262
+ )
263
+ self.flows.append(modules.Flip())
264
+
265
+ def forward(self, x, x_mask, g=None, reverse=False):
266
+ if not reverse:
267
+ for flow in self.flows:
268
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
269
+ else:
270
+ for flow in reversed(self.flows):
271
+ x = flow(x, x_mask, g=g, reverse=reverse)
272
+ return x
273
+
274
+
275
+ class PosteriorEncoder(nn.Module):
276
+ def __init__(
277
+ self,
278
+ in_channels,
279
+ out_channels,
280
+ hidden_channels,
281
+ kernel_size,
282
+ dilation_rate,
283
+ n_layers,
284
+ gin_channels=0,
285
+ ):
286
+ super().__init__()
287
+ self.in_channels = in_channels
288
+ self.out_channels = out_channels
289
+ self.hidden_channels = hidden_channels
290
+ self.kernel_size = kernel_size
291
+ self.dilation_rate = dilation_rate
292
+ self.n_layers = n_layers
293
+ self.gin_channels = gin_channels
294
+
295
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
296
+ self.enc = modules.WN(
297
+ hidden_channels,
298
+ kernel_size,
299
+ dilation_rate,
300
+ n_layers,
301
+ gin_channels=gin_channels,
302
+ )
303
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
304
+
305
+ def forward(self, x, x_lengths, g=None):
306
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
307
+ x.dtype
308
+ )
309
+ x = self.pre(x) * x_mask
310
+ x = self.enc(x, x_mask, g=g)
311
+ stats = self.proj(x) * x_mask
312
+ m, logs = torch.split(stats, self.out_channels, dim=1)
313
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
314
+ return z, m, logs, x_mask
315
+
316
+
317
+ class iSTFT_Generator(torch.nn.Module):
318
+ def __init__(
319
+ self,
320
+ initial_channel,
321
+ resblock,
322
+ resblock_kernel_sizes,
323
+ resblock_dilation_sizes,
324
+ upsample_rates,
325
+ upsample_initial_channel,
326
+ upsample_kernel_sizes,
327
+ gen_istft_n_fft,
328
+ gen_istft_hop_size,
329
+ gin_channels=0,
330
+ ):
331
+ super(iSTFT_Generator, self).__init__()
332
+ # self.h = h
333
+ self.gen_istft_n_fft = gen_istft_n_fft
334
+ self.gen_istft_hop_size = gen_istft_hop_size
335
+
336
+ self.num_kernels = len(resblock_kernel_sizes)
337
+ self.num_upsamples = len(upsample_rates)
338
+ self.conv_pre = weight_norm(
339
+ Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
340
+ )
341
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
342
+
343
+ self.ups = nn.ModuleList()
344
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
345
+ self.ups.append(
346
+ weight_norm(
347
+ ConvTranspose1d(
348
+ upsample_initial_channel // (2**i),
349
+ upsample_initial_channel // (2 ** (i + 1)),
350
+ k,
351
+ u,
352
+ padding=(k - u) // 2,
353
+ )
354
+ )
355
+ )
356
+
357
+ self.resblocks = nn.ModuleList()
358
+ for i in range(len(self.ups)):
359
+ ch = upsample_initial_channel // (2 ** (i + 1))
360
+ for j, (k, d) in enumerate(
361
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
362
+ ):
363
+ self.resblocks.append(resblock(ch, k, d))
364
+
365
+ self.post_n_fft = self.gen_istft_n_fft
366
+ self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
367
+ self.ups.apply(init_weights)
368
+ self.conv_post.apply(init_weights)
369
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
370
+ self.stft = TorchSTFT(
371
+ filter_length=self.gen_istft_n_fft,
372
+ hop_length=self.gen_istft_hop_size,
373
+ win_length=self.gen_istft_n_fft,
374
+ )
375
+
376
+ def forward(self, x, g=None):
377
+
378
+ x = self.conv_pre(x)
379
+ for i in range(self.num_upsamples):
380
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
381
+ x = self.ups[i](x)
382
+ xs = None
383
+ for j in range(self.num_kernels):
384
+ if xs is None:
385
+ xs = self.resblocks[i * self.num_kernels + j](x)
386
+ else:
387
+ xs += self.resblocks[i * self.num_kernels + j](x)
388
+ x = xs / self.num_kernels
389
+ x = F.leaky_relu(x)
390
+ x = self.reflection_pad(x)
391
+ x = self.conv_post(x)
392
+ spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :])
393
+ phase = math.pi * torch.sin(x[:, self.post_n_fft // 2 + 1 :, :])
394
+ out = self.stft.inverse(spec, phase).to(x.device)
395
+ return out, None
396
+
397
+ def remove_weight_norm(self):
398
+ print("Removing weight norm...")
399
+ for l in self.ups:
400
+ remove_weight_norm(l)
401
+ for l in self.resblocks:
402
+ l.remove_weight_norm()
403
+ remove_weight_norm(self.conv_pre)
404
+ remove_weight_norm(self.conv_post)
405
+
406
+
407
+ class Multiband_iSTFT_Generator(torch.nn.Module):
408
+ def __init__(
409
+ self,
410
+ initial_channel,
411
+ resblock,
412
+ resblock_kernel_sizes,
413
+ resblock_dilation_sizes,
414
+ upsample_rates,
415
+ upsample_initial_channel,
416
+ upsample_kernel_sizes,
417
+ gen_istft_n_fft,
418
+ gen_istft_hop_size,
419
+ subbands,
420
+ gin_channels=0,
421
+ ):
422
+ super(Multiband_iSTFT_Generator, self).__init__()
423
+ # self.h = h
424
+ self.subbands = subbands
425
+ self.num_kernels = len(resblock_kernel_sizes)
426
+ self.num_upsamples = len(upsample_rates)
427
+ self.conv_pre = weight_norm(
428
+ Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
429
+ )
430
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
431
+
432
+ self.ups = nn.ModuleList()
433
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
434
+ self.ups.append(
435
+ weight_norm(
436
+ ConvTranspose1d(
437
+ upsample_initial_channel // (2**i),
438
+ upsample_initial_channel // (2 ** (i + 1)),
439
+ k,
440
+ u,
441
+ padding=(k - u) // 2,
442
+ )
443
+ )
444
+ )
445
+
446
+ self.resblocks = nn.ModuleList()
447
+ for i in range(len(self.ups)):
448
+ ch = upsample_initial_channel // (2 ** (i + 1))
449
+ for j, (k, d) in enumerate(
450
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
451
+ ):
452
+ self.resblocks.append(resblock(ch, k, d))
453
+
454
+ self.post_n_fft = gen_istft_n_fft
455
+ self.ups.apply(init_weights)
456
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
457
+ self.reshape_pixelshuffle = []
458
+
459
+ self.subband_conv_post = weight_norm(
460
+ Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3)
461
+ )
462
+
463
+ self.subband_conv_post.apply(init_weights)
464
+
465
+ self.gen_istft_n_fft = gen_istft_n_fft
466
+ self.gen_istft_hop_size = gen_istft_hop_size
467
+
468
+ def forward(self, x, g=None):
469
+ stft = TorchSTFT(
470
+ filter_length=self.gen_istft_n_fft,
471
+ hop_length=self.gen_istft_hop_size,
472
+ win_length=self.gen_istft_n_fft,
473
+ ).to(x.device)
474
+ pqmf = PQMF(x.device)
475
+
476
+ x = self.conv_pre(x) # [B, ch, length]
477
+
478
+ for i in range(self.num_upsamples):
479
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
480
+ x = self.ups[i](x)
481
+
482
+ xs = None
483
+ for j in range(self.num_kernels):
484
+ if xs is None:
485
+ xs = self.resblocks[i * self.num_kernels + j](x)
486
+ else:
487
+ xs += self.resblocks[i * self.num_kernels + j](x)
488
+ x = xs / self.num_kernels
489
+
490
+ x = F.leaky_relu(x)
491
+ x = self.reflection_pad(x)
492
+ x = self.subband_conv_post(x)
493
+ x = torch.reshape(
494
+ x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1])
495
+ )
496
+
497
+ spec = torch.exp(x[:, :, : self.post_n_fft // 2 + 1, :])
498
+ phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1 :, :])
499
+
500
+ y_mb_hat = stft.inverse(
501
+ torch.reshape(
502
+ spec,
503
+ (
504
+ spec.shape[0] * self.subbands,
505
+ self.gen_istft_n_fft // 2 + 1,
506
+ spec.shape[-1],
507
+ ),
508
+ ),
509
+ torch.reshape(
510
+ phase,
511
+ (
512
+ phase.shape[0] * self.subbands,
513
+ self.gen_istft_n_fft // 2 + 1,
514
+ phase.shape[-1],
515
+ ),
516
+ ),
517
+ )
518
+ y_mb_hat = torch.reshape(
519
+ y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1])
520
+ )
521
+ y_mb_hat = y_mb_hat.squeeze(-2)
522
+
523
+ y_g_hat = pqmf.synthesis(y_mb_hat)
524
+
525
+ return y_g_hat, y_mb_hat
526
+
527
+ def remove_weight_norm(self):
528
+ print("Removing weight norm...")
529
+ for l in self.ups:
530
+ remove_weight_norm(l)
531
+ for l in self.resblocks:
532
+ l.remove_weight_norm()
533
+
534
+
535
+ class Multistream_iSTFT_Generator(torch.nn.Module):
536
+ def __init__(
537
+ self,
538
+ initial_channel,
539
+ resblock,
540
+ resblock_kernel_sizes,
541
+ resblock_dilation_sizes,
542
+ upsample_rates,
543
+ upsample_initial_channel,
544
+ upsample_kernel_sizes,
545
+ gen_istft_n_fft,
546
+ gen_istft_hop_size,
547
+ subbands,
548
+ gin_channels=0,
549
+ ):
550
+ super(Multistream_iSTFT_Generator, self).__init__()
551
+ # self.h = h
552
+ self.subbands = subbands
553
+ self.num_kernels = len(resblock_kernel_sizes)
554
+ self.num_upsamples = len(upsample_rates)
555
+ self.conv_pre = weight_norm(
556
+ Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
557
+ )
558
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
559
+
560
+ self.ups = nn.ModuleList()
561
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
562
+ self.ups.append(
563
+ weight_norm(
564
+ ConvTranspose1d(
565
+ upsample_initial_channel // (2**i),
566
+ upsample_initial_channel // (2 ** (i + 1)),
567
+ k,
568
+ u,
569
+ padding=(k - u) // 2,
570
+ )
571
+ )
572
+ )
573
+
574
+ self.resblocks = nn.ModuleList()
575
+ for i in range(len(self.ups)):
576
+ ch = upsample_initial_channel // (2 ** (i + 1))
577
+ for j, (k, d) in enumerate(
578
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
579
+ ):
580
+ self.resblocks.append(resblock(ch, k, d))
581
+
582
+ self.post_n_fft = gen_istft_n_fft
583
+ self.ups.apply(init_weights)
584
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
585
+ self.reshape_pixelshuffle = []
586
+
587
+ self.subband_conv_post = weight_norm(
588
+ Conv1d(ch, self.subbands * (self.post_n_fft + 2), 7, 1, padding=3)
589
+ )
590
+
591
+ self.subband_conv_post.apply(init_weights)
592
+
593
+ self.gen_istft_n_fft = gen_istft_n_fft
594
+ self.gen_istft_hop_size = gen_istft_hop_size
595
+
596
+ updown_filter = torch.zeros(
597
+ (self.subbands, self.subbands, self.subbands)
598
+ ).float()
599
+ for k in range(self.subbands):
600
+ updown_filter[k, k, 0] = 1.0
601
+ self.register_buffer("updown_filter", updown_filter)
602
+ self.multistream_conv_post = weight_norm(
603
+ Conv1d(4, 1, kernel_size=63, bias=False, padding=get_padding(63, 1))
604
+ )
605
+ self.multistream_conv_post.apply(init_weights)
606
+
607
+ def forward(self, x, g=None):
608
+ stft = TorchSTFT(
609
+ filter_length=self.gen_istft_n_fft,
610
+ hop_length=self.gen_istft_hop_size,
611
+ win_length=self.gen_istft_n_fft,
612
+ ).to(x.device)
613
+ # pqmf = PQMF(x.device)
614
+
615
+ x = self.conv_pre(x) # [B, ch, length]
616
+
617
+ for i in range(self.num_upsamples):
618
+
619
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
620
+ x = self.ups[i](x)
621
+
622
+ xs = None
623
+ for j in range(self.num_kernels):
624
+ if xs is None:
625
+ xs = self.resblocks[i * self.num_kernels + j](x)
626
+ else:
627
+ xs += self.resblocks[i * self.num_kernels + j](x)
628
+ x = xs / self.num_kernels
629
+
630
+ x = F.leaky_relu(x)
631
+ x = self.reflection_pad(x)
632
+ x = self.subband_conv_post(x)
633
+ x = torch.reshape(
634
+ x, (x.shape[0], self.subbands, x.shape[1] // self.subbands, x.shape[-1])
635
+ )
636
+
637
+ spec = torch.exp(x[:, :, : self.post_n_fft // 2 + 1, :])
638
+ phase = math.pi * torch.sin(x[:, :, self.post_n_fft // 2 + 1 :, :])
639
+
640
+ y_mb_hat = stft.inverse(
641
+ torch.reshape(
642
+ spec,
643
+ (
644
+ spec.shape[0] * self.subbands,
645
+ self.gen_istft_n_fft // 2 + 1,
646
+ spec.shape[-1],
647
+ ),
648
+ ),
649
+ torch.reshape(
650
+ phase,
651
+ (
652
+ phase.shape[0] * self.subbands,
653
+ self.gen_istft_n_fft // 2 + 1,
654
+ phase.shape[-1],
655
+ ),
656
+ ),
657
+ )
658
+ y_mb_hat = torch.reshape(
659
+ y_mb_hat, (x.shape[0], self.subbands, 1, y_mb_hat.shape[-1])
660
+ )
661
+ y_mb_hat = y_mb_hat.squeeze(-2)
662
+
663
+ y_mb_hat = F.conv_transpose1d(
664
+ y_mb_hat,
665
+ self.updown_filter.cuda(x.device) * self.subbands,
666
+ stride=self.subbands,
667
+ )
668
+
669
+ y_g_hat = self.multistream_conv_post(y_mb_hat)
670
+
671
+ return y_g_hat, y_mb_hat
672
+
673
+ def remove_weight_norm(self):
674
+ print("Removing weight norm...")
675
+ for l in self.ups:
676
+ remove_weight_norm(l)
677
+ for l in self.resblocks:
678
+ l.remove_weight_norm()
679
+
680
+
681
+ class DiscriminatorP(torch.nn.Module):
682
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
683
+ super(DiscriminatorP, self).__init__()
684
+ self.period = period
685
+ self.use_spectral_norm = use_spectral_norm
686
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
687
+ self.convs = nn.ModuleList(
688
+ [
689
+ norm_f(
690
+ Conv2d(
691
+ 1,
692
+ 32,
693
+ (kernel_size, 1),
694
+ (stride, 1),
695
+ padding=(get_padding(kernel_size, 1), 0),
696
+ )
697
+ ),
698
+ norm_f(
699
+ Conv2d(
700
+ 32,
701
+ 128,
702
+ (kernel_size, 1),
703
+ (stride, 1),
704
+ padding=(get_padding(kernel_size, 1), 0),
705
+ )
706
+ ),
707
+ norm_f(
708
+ Conv2d(
709
+ 128,
710
+ 512,
711
+ (kernel_size, 1),
712
+ (stride, 1),
713
+ padding=(get_padding(kernel_size, 1), 0),
714
+ )
715
+ ),
716
+ norm_f(
717
+ Conv2d(
718
+ 512,
719
+ 1024,
720
+ (kernel_size, 1),
721
+ (stride, 1),
722
+ padding=(get_padding(kernel_size, 1), 0),
723
+ )
724
+ ),
725
+ norm_f(
726
+ Conv2d(
727
+ 1024,
728
+ 1024,
729
+ (kernel_size, 1),
730
+ 1,
731
+ padding=(get_padding(kernel_size, 1), 0),
732
+ )
733
+ ),
734
+ ]
735
+ )
736
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
737
+
738
+ def forward(self, x):
739
+ fmap = []
740
+
741
+ # 1d to 2d
742
+ b, c, t = x.shape
743
+ if t % self.period != 0: # pad first
744
+ n_pad = self.period - (t % self.period)
745
+ x = F.pad(x, (0, n_pad), "reflect")
746
+ t = t + n_pad
747
+ x = x.view(b, c, t // self.period, self.period)
748
+
749
+ for l in self.convs:
750
+ x = l(x)
751
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
752
+ fmap.append(x)
753
+ x = self.conv_post(x)
754
+ fmap.append(x)
755
+ x = torch.flatten(x, 1, -1)
756
+
757
+ return x, fmap
758
+
759
+
760
+ class DiscriminatorS(torch.nn.Module):
761
+ def __init__(self, use_spectral_norm=False):
762
+ super(DiscriminatorS, self).__init__()
763
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
764
+ self.convs = nn.ModuleList(
765
+ [
766
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
767
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
768
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
769
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
770
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
771
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
772
+ ]
773
+ )
774
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
775
+
776
+ def forward(self, x):
777
+ fmap = []
778
+
779
+ for l in self.convs:
780
+ x = l(x)
781
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
782
+ fmap.append(x)
783
+ x = self.conv_post(x)
784
+ fmap.append(x)
785
+ x = torch.flatten(x, 1, -1)
786
+
787
+ return x, fmap
788
+
789
+
790
+ class MultiPeriodDiscriminator(torch.nn.Module):
791
+ def __init__(self, use_spectral_norm=False):
792
+ super(MultiPeriodDiscriminator, self).__init__()
793
+ periods = [2, 3, 5, 7, 11]
794
+
795
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
796
+ discs = discs + [
797
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
798
+ ]
799
+ self.discriminators = nn.ModuleList(discs)
800
+
801
+ def forward(self, y, y_hat):
802
+ y_d_rs = []
803
+ y_d_gs = []
804
+ fmap_rs = []
805
+ fmap_gs = []
806
+ for i, d in enumerate(self.discriminators):
807
+ y_d_r, fmap_r = d(y)
808
+ y_d_g, fmap_g = d(y_hat)
809
+ y_d_rs.append(y_d_r)
810
+ y_d_gs.append(y_d_g)
811
+ fmap_rs.append(fmap_r)
812
+ fmap_gs.append(fmap_g)
813
+
814
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
815
+
816
+
817
+ class SynthesizerTrn(nn.Module):
818
+ """
819
+ Synthesizer for Training
820
+ """
821
+
822
+ def __init__(
823
+ self,
824
+ n_vocab,
825
+ spec_channels,
826
+ segment_size,
827
+ inter_channels,
828
+ hidden_channels,
829
+ filter_channels,
830
+ n_heads,
831
+ n_layers,
832
+ kernel_size,
833
+ p_dropout,
834
+ resblock,
835
+ resblock_kernel_sizes,
836
+ resblock_dilation_sizes,
837
+ upsample_rates,
838
+ upsample_initial_channel,
839
+ upsample_kernel_sizes,
840
+ gen_istft_n_fft=16,
841
+ gen_istft_hop_size=4,
842
+ n_speakers=0,
843
+ gin_channels=0,
844
+ use_sdp=True,
845
+ ms_istft_vits=False,
846
+ mb_istft_vits=False,
847
+ subbands=False,
848
+ istft_vits=False,
849
+ **kwargs
850
+ ):
851
+
852
+ super().__init__()
853
+ self.n_vocab = n_vocab
854
+ self.spec_channels = spec_channels
855
+ self.inter_channels = inter_channels
856
+ self.hidden_channels = hidden_channels
857
+ self.filter_channels = filter_channels
858
+ self.n_heads = n_heads
859
+ self.n_layers = n_layers
860
+ self.kernel_size = kernel_size
861
+ self.p_dropout = p_dropout
862
+ self.resblock = resblock
863
+ self.resblock_kernel_sizes = resblock_kernel_sizes
864
+ self.resblock_dilation_sizes = resblock_dilation_sizes
865
+ self.upsample_rates = upsample_rates
866
+ self.upsample_initial_channel = upsample_initial_channel
867
+ self.upsample_kernel_sizes = upsample_kernel_sizes
868
+ self.segment_size = segment_size
869
+ self.n_speakers = n_speakers
870
+ self.gin_channels = gin_channels
871
+ self.ms_istft_vits = ms_istft_vits
872
+ self.mb_istft_vits = mb_istft_vits
873
+ self.istft_vits = istft_vits
874
+
875
+ self.use_sdp = use_sdp
876
+
877
+ self.enc_p = TextEncoder(
878
+ n_vocab,
879
+ inter_channels,
880
+ hidden_channels,
881
+ filter_channels,
882
+ n_heads,
883
+ n_layers,
884
+ kernel_size,
885
+ p_dropout,
886
+ )
887
+ if mb_istft_vits == True:
888
+ self.dec = Multiband_iSTFT_Generator(
889
+ inter_channels,
890
+ resblock,
891
+ resblock_kernel_sizes,
892
+ resblock_dilation_sizes,
893
+ upsample_rates,
894
+ upsample_initial_channel,
895
+ upsample_kernel_sizes,
896
+ gen_istft_n_fft,
897
+ gen_istft_hop_size,
898
+ subbands,
899
+ gin_channels=gin_channels,
900
+ )
901
+ print("Use Mutli-band iSTFT VITS")
902
+ elif ms_istft_vits == True:
903
+ print("Use Mutli-stream iSTFT VITS")
904
+ self.dec = Multistream_iSTFT_Generator(
905
+ inter_channels,
906
+ resblock,
907
+ resblock_kernel_sizes,
908
+ resblock_dilation_sizes,
909
+ upsample_rates,
910
+ upsample_initial_channel,
911
+ upsample_kernel_sizes,
912
+ gen_istft_n_fft,
913
+ gen_istft_hop_size,
914
+ subbands,
915
+ gin_channels=gin_channels,
916
+ )
917
+ elif istft_vits == True:
918
+ print("Use iSTFT-VITS")
919
+ self.dec = iSTFT_Generator(
920
+ inter_channels,
921
+ resblock,
922
+ resblock_kernel_sizes,
923
+ resblock_dilation_sizes,
924
+ upsample_rates,
925
+ upsample_initial_channel,
926
+ upsample_kernel_sizes,
927
+ gen_istft_n_fft,
928
+ gen_istft_hop_size,
929
+ gin_channels=gin_channels,
930
+ )
931
+ else:
932
+ print("Using origin VITS")
933
+ self.dec = Generator(
934
+ inter_channels,
935
+ resblock,
936
+ resblock_kernel_sizes,
937
+ resblock_dilation_sizes,
938
+ upsample_rates,
939
+ upsample_initial_channel,
940
+ upsample_kernel_sizes,
941
+ gin_channels=gin_channels,
942
+ )
943
+
944
+ self.enc_q = PosteriorEncoder(
945
+ spec_channels,
946
+ inter_channels,
947
+ hidden_channels,
948
+ 5,
949
+ 1,
950
+ 16,
951
+ gin_channels=gin_channels,
952
+ )
953
+ self.flow = ResidualCouplingBlock(
954
+ inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
955
+ )
956
+ # 随机时长预测器
957
+ if use_sdp:
958
+ self.dp = StochasticDurationPredictor(
959
+ hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
960
+ )
961
+ else:
962
+ self.dp = DurationPredictor(
963
+ hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
964
+ )
965
+ if n_speakers > 0:
966
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
967
+
968
+ def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert):
969
+ if self.n_speakers > 0:
970
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
971
+ else:
972
+ g = None
973
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert, g=g)
974
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
975
+ z_p = self.flow(z, y_mask, g=g)
976
+ with torch.no_grad():
977
+ # negative cross-entropy
978
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
979
+ neg_cent1 = torch.sum(
980
+ -0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
981
+ ) # [b, 1, t_s]
982
+ neg_cent2 = torch.matmul(
983
+ -0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
984
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
985
+ neg_cent3 = torch.matmul(
986
+ z_p.transpose(1, 2), (m_p * s_p_sq_r)
987
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
988
+ neg_cent4 = torch.sum(
989
+ -0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
990
+ ) # [b, 1, t_s]
991
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
992
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
993
+ attn = (
994
+ monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
995
+ .unsqueeze(1)
996
+ .detach()
997
+ )
998
+ w = attn.sum(2)
999
+ if self.use_sdp:
1000
+ l_length = self.dp(x, x_mask, w, g=g)
1001
+ l_length = l_length / torch.sum(x_mask)
1002
+ else:
1003
+ logw_ = torch.log(w + 1e-6) * x_mask
1004
+ logw = self.dp(x, x_mask, g=g)
1005
+ l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
1006
+ x_mask
1007
+ ) # for averaging
1008
+ # expand prior
1009
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
1010
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
1011
+ z_slice, ids_slice = commons.rand_slice_segments(
1012
+ z, y_lengths, self.segment_size
1013
+ )
1014
+ # 修改了解码器
1015
+ o, o_mb = self.dec(z_slice, g=g)
1016
+ return (
1017
+ o,
1018
+ o_mb,
1019
+ l_length,
1020
+ attn,
1021
+ ids_slice,
1022
+ x_mask,
1023
+ y_mask,
1024
+ (z, z_p, m_p, logs_p, m_q, logs_q),
1025
+ )
1026
+
1027
+ def infer(
1028
+ self,
1029
+ x,
1030
+ x_lengths,
1031
+ sid,
1032
+ tone,
1033
+ language,
1034
+ bert,
1035
+ noise_scale=0.667,
1036
+ length_scale=1,
1037
+ noise_scale_w=1,
1038
+ max_len=None,
1039
+ ):
1040
+ if self.n_speakers > 0:
1041
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1042
+ else:
1043
+ g = None
1044
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert, g=g)
1045
+
1046
+ if self.use_sdp:
1047
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
1048
+ else:
1049
+ logw = self.dp(x, x_mask, g=g)
1050
+
1051
+ w = torch.exp(logw) * x_mask * length_scale
1052
+ w_ceil = torch.ceil(w) # 向上取整
1053
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
1054
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
1055
+ x_mask.dtype
1056
+ )
1057
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
1058
+ attn = commons.generate_path(w_ceil, attn_mask)
1059
+
1060
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
1061
+ 1, 2
1062
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
1063
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
1064
+ 1, 2
1065
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
1066
+
1067
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
1068
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1069
+ o, o_mb = self.dec((z * y_mask)[:, :, :max_len], g=g)
1070
+ return o, o_mb, attn, y_mask, (z, z_p, m_p, logs_p)
1071
+
1072
+
1073
+ class Generator(torch.nn.Module):
1074
+ def __init__(
1075
+ self,
1076
+ initial_channel,
1077
+ resblock,
1078
+ resblock_kernel_sizes,
1079
+ resblock_dilation_sizes,
1080
+ upsample_rates,
1081
+ upsample_initial_channel,
1082
+ upsample_kernel_sizes,
1083
+ gin_channels=0,
1084
+ ):
1085
+ super(Generator, self).__init__()
1086
+ self.num_kernels = len(resblock_kernel_sizes)
1087
+ self.num_upsamples = len(upsample_rates)
1088
+ self.conv_pre = Conv1d(
1089
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
1090
+ )
1091
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
1092
+
1093
+ self.ups = nn.ModuleList()
1094
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
1095
+ self.ups.append(
1096
+ weight_norm(
1097
+ ConvTranspose1d(
1098
+ upsample_initial_channel // (2**i),
1099
+ upsample_initial_channel // (2 ** (i + 1)),
1100
+ k,
1101
+ u,
1102
+ padding=(k - u) // 2,
1103
+ )
1104
+ )
1105
+ )
1106
+
1107
+ self.resblocks = nn.ModuleList()
1108
+ for i in range(len(self.ups)):
1109
+ ch = upsample_initial_channel // (2 ** (i + 1))
1110
+ for j, (k, d) in enumerate(
1111
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
1112
+ ):
1113
+ self.resblocks.append(resblock(ch, k, d))
1114
+
1115
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
1116
+ self.ups.apply(init_weights)
1117
+
1118
+ if gin_channels != 0:
1119
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
1120
+
1121
+ def forward(self, x, g=None):
1122
+ x = self.conv_pre(x)
1123
+ if g is not None:
1124
+ x = x + self.cond(g)
1125
+
1126
+ for i in range(self.num_upsamples):
1127
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1128
+ x = self.ups[i](x)
1129
+ xs = None
1130
+ for j in range(self.num_kernels):
1131
+ if xs is None:
1132
+ xs = self.resblocks[i * self.num_kernels + j](x)
1133
+ else:
1134
+ xs += self.resblocks[i * self.num_kernels + j](x)
1135
+ x = xs / self.num_kernels
1136
+ x = F.leaky_relu(x)
1137
+ x = self.conv_post(x)
1138
+ x = torch.tanh(x)
1139
+
1140
+ return x
1141
+
1142
+ def remove_weight_norm(self):
1143
+ print("Removing weight norm...")
1144
+ for layer in self.ups:
1145
+ remove_weight_norm(layer)
1146
+ for layer in self.resblocks:
1147
+ layer.remove_weight_norm()
modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
pqmf.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Copyright 2020 Tomoki Hayashi
4
+ # MIT License (https://opensource.org/licenses/MIT)
5
+
6
+ """Pseudo QMF modules."""
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+
12
+ from scipy.signal import kaiser
13
+
14
+
15
+ def design_prototype_filter(taps=62, cutoff_ratio=0.15, beta=9.0):
16
+ """Design prototype filter for PQMF.
17
+ This method is based on `A Kaiser window approach for the design of prototype
18
+ filters of cosine modulated filterbanks`_.
19
+ Args:
20
+ taps (int): The number of filter taps.
21
+ cutoff_ratio (float): Cut-off frequency ratio.
22
+ beta (float): Beta coefficient for kaiser window.
23
+ Returns:
24
+ ndarray: Impluse response of prototype filter (taps + 1,).
25
+ .. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
26
+ https://ieeexplore.ieee.org/abstract/document/681427
27
+ """
28
+ # check the arguments are valid
29
+ assert taps % 2 == 0, "The number of taps mush be even number."
30
+ assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
31
+
32
+ # make initial filter
33
+ omega_c = np.pi * cutoff_ratio
34
+ with np.errstate(invalid='ignore'):
35
+ h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) \
36
+ / (np.pi * (np.arange(taps + 1) - 0.5 * taps))
37
+ h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
38
+
39
+ # apply kaiser window
40
+ w = kaiser(taps + 1, beta)
41
+ h = h_i * w
42
+
43
+ return h
44
+
45
+
46
+ class PQMF(torch.nn.Module):
47
+ """PQMF module.
48
+ This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
49
+ .. _`Near-perfect-reconstruction pseudo-QMF banks`:
50
+ https://ieeexplore.ieee.org/document/258122
51
+ """
52
+
53
+ def __init__(self, device, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0):
54
+ """Initilize PQMF module.
55
+ Args:
56
+ subbands (int): The number of subbands.
57
+ taps (int): The number of filter taps.
58
+ cutoff_ratio (float): Cut-off frequency ratio.
59
+ beta (float): Beta coefficient for kaiser window.
60
+ """
61
+ super(PQMF, self).__init__()
62
+
63
+ # define filter coefficient
64
+ h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
65
+ h_analysis = np.zeros((subbands, len(h_proto)))
66
+ h_synthesis = np.zeros((subbands, len(h_proto)))
67
+ for k in range(subbands):
68
+ h_analysis[k] = 2 * h_proto * np.cos(
69
+ (2 * k + 1) * (np.pi / (2 * subbands)) *
70
+ (np.arange(taps + 1) - ((taps - 1) / 2)) +
71
+ (-1) ** k * np.pi / 4)
72
+ h_synthesis[k] = 2 * h_proto * np.cos(
73
+ (2 * k + 1) * (np.pi / (2 * subbands)) *
74
+ (np.arange(taps + 1) - ((taps - 1) / 2)) -
75
+ (-1) ** k * np.pi / 4)
76
+
77
+ # convert to tensor
78
+ analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1).cuda(device)
79
+ synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0).cuda(device)
80
+
81
+ # register coefficients as beffer
82
+ self.register_buffer("analysis_filter", analysis_filter)
83
+ self.register_buffer("synthesis_filter", synthesis_filter)
84
+
85
+ # filter for downsampling & upsampling
86
+ updown_filter = torch.zeros((subbands, subbands, subbands)).float().cuda(device)
87
+ for k in range(subbands):
88
+ updown_filter[k, k, 0] = 1.0
89
+ self.register_buffer("updown_filter", updown_filter)
90
+ self.subbands = subbands
91
+
92
+ # keep padding info
93
+ self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0)
94
+
95
+ def analysis(self, x):
96
+ """Analysis with PQMF.
97
+ Args:
98
+ x (Tensor): Input tensor (B, 1, T).
99
+ Returns:
100
+ Tensor: Output tensor (B, subbands, T // subbands).
101
+ """
102
+ x = F.conv1d(self.pad_fn(x), self.analysis_filter)
103
+ return F.conv1d(x, self.updown_filter, stride=self.subbands)
104
+
105
+ def synthesis(self, x):
106
+ """Synthesis with PQMF.
107
+ Args:
108
+ x (Tensor): Input tensor (B, subbands, T // subbands).
109
+ Returns:
110
+ Tensor: Output tensor (B, 1, T).
111
+ """
112
+ # NOTE(kan-bayashi): Power will be dreased so here multipy by # subbands.
113
+ # Not sure this is the correct way, it is better to check again.
114
+ # TODO(kan-bayashi): Understand the reconstruction procedure
115
+ x = F.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands)
116
+ return F.conv1d(self.pad_fn(x), self.synthesis_filter)
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+
12
+ MATPLOTLIB_FLAG = False
13
+
14
+ logging.basicConfig(stream=sys.stdout, level=logging.WARNING)
15
+ logger = logging
16
+
17
+
18
+ def load_checkpoint(checkpoint_path, model, optimizer=None, load_pretrain=False):
19
+ print("checkpoint_path is ", checkpoint_path)
20
+ assert os.path.isfile(checkpoint_path)
21
+ checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
22
+ iteration = checkpoint_dict["iteration"]
23
+ learning_rate = checkpoint_dict["learning_rate"]
24
+ if optimizer is not None:
25
+ optimizer.load_state_dict(checkpoint_dict["optimizer"])
26
+ saved_state_dict = checkpoint_dict["model"]
27
+ if hasattr(model, "module"):
28
+ state_dict = model.module.state_dict()
29
+ else:
30
+ state_dict = model.state_dict()
31
+ new_state_dict = {}
32
+ for k, v in state_dict.items():
33
+ try:
34
+ if load_pretrain:
35
+ # 底模训练
36
+ # 说话人信息掩盖掉
37
+ if k == "emb_g.weight":
38
+ new_state_dict[k] = v
39
+ else:
40
+ new_state_dict[k] = saved_state_dict[k]
41
+ else:
42
+ new_state_dict[k] = saved_state_dict[k]
43
+ except:
44
+ logger.info("%s is not in the checkpoint" % k)
45
+ new_state_dict[k] = v
46
+ if hasattr(model, "module"):
47
+ model.module.load_state_dict(new_state_dict)
48
+ else:
49
+ model.load_state_dict(new_state_dict)
50
+ logger.info(
51
+ "Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
52
+ )
53
+ return model, optimizer, learning_rate, iteration
54
+
55
+
56
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
57
+ logger.info(
58
+ "Saving model and optimizer state at iteration {} to {}".format(
59
+ iteration, checkpoint_path
60
+ )
61
+ )
62
+
63
+ if hasattr(model, "module"):
64
+ state_dict = model.module.state_dict()
65
+ else:
66
+ state_dict = model.state_dict()
67
+ torch.save(
68
+ {
69
+ "model": state_dict,
70
+ "iteration": iteration,
71
+ "optimizer": optimizer.state_dict(),
72
+ "learning_rate": learning_rate,
73
+ },
74
+ checkpoint_path,
75
+ )
76
+
77
+
78
+ def summarize(
79
+ writer,
80
+ global_step,
81
+ scalars={},
82
+ histograms={},
83
+ images={},
84
+ audios={},
85
+ audio_sampling_rate=22050,
86
+ ):
87
+ for k, v in scalars.items():
88
+ writer.add_scalar(k, v, global_step)
89
+ for k, v in histograms.items():
90
+ writer.add_histogram(k, v, global_step)
91
+ for k, v in images.items():
92
+ writer.add_image(k, v, global_step, dataformats="HWC")
93
+ for k, v in audios.items():
94
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
95
+
96
+
97
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
98
+ f_list = glob.glob(os.path.join(dir_path, regex))
99
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
100
+ x = f_list[-1]
101
+ print(x)
102
+ return x
103
+
104
+
105
+ def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
106
+ """Freeing up space by deleting saved ckpts
107
+
108
+ Arguments:
109
+ path_to_models -- Path to the model directory
110
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
111
+ sort_by_time -- True -> chronologically delete ckpts
112
+ False -> lexicographically delete ckpts
113
+ """
114
+ import re
115
+
116
+ ckpts_files = [
117
+ f
118
+ for f in os.listdir(path_to_models)
119
+ if os.path.isfile(os.path.join(path_to_models, f))
120
+ ]
121
+
122
+ def name_key(_f):
123
+ return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
124
+
125
+ def time_key(_f):
126
+ return os.path.getmtime(os.path.join(path_to_models, _f))
127
+
128
+ sort_key = time_key if sort_by_time else name_key
129
+
130
+ def x_sorted(_x):
131
+ return sorted(
132
+ [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
133
+ key=sort_key,
134
+ )
135
+
136
+ to_del = [
137
+ os.path.join(path_to_models, fn)
138
+ for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
139
+ ]
140
+
141
+ def del_info(fn):
142
+ return logger.info(f".. Free up space by deleting ckpt {fn}")
143
+
144
+ def del_routine(x):
145
+ return [os.remove(x), del_info(x)]
146
+
147
+ [del_routine(fn) for fn in to_del]
148
+
149
+
150
+ def plot_spectrogram_to_numpy(spectrogram):
151
+ global MATPLOTLIB_FLAG
152
+ if not MATPLOTLIB_FLAG:
153
+ import matplotlib
154
+
155
+ matplotlib.use("Agg")
156
+ MATPLOTLIB_FLAG = True
157
+ mpl_logger = logging.getLogger("matplotlib")
158
+ mpl_logger.setLevel(logging.WARNING)
159
+ import matplotlib.pylab as plt
160
+ import numpy as np
161
+
162
+ fig, ax = plt.subplots(figsize=(10, 2))
163
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
164
+ plt.colorbar(im, ax=ax)
165
+ plt.xlabel("Frames")
166
+ plt.ylabel("Frequency")
167
+ plt.tight_layout()
168
+
169
+ fig.canvas.draw()
170
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
171
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
172
+ plt.close()
173
+ return data
174
+
175
+
176
+ def plot_alignment_to_numpy(alignment, info=None):
177
+ global MATPLOTLIB_FLAG
178
+ if not MATPLOTLIB_FLAG:
179
+ import matplotlib
180
+
181
+ matplotlib.use("Agg")
182
+ MATPLOTLIB_FLAG = True
183
+ mpl_logger = logging.getLogger("matplotlib")
184
+ mpl_logger.setLevel(logging.WARNING)
185
+ import matplotlib.pylab as plt
186
+ import numpy as np
187
+
188
+ fig, ax = plt.subplots(figsize=(6, 4))
189
+ im = ax.imshow(
190
+ alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
191
+ )
192
+ fig.colorbar(im, ax=ax)
193
+ xlabel = "Decoder timestep"
194
+ if info is not None:
195
+ xlabel += "\n\n" + info
196
+ plt.xlabel(xlabel)
197
+ plt.ylabel("Encoder timestep")
198
+ plt.tight_layout()
199
+
200
+ fig.canvas.draw()
201
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
202
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
203
+ plt.close()
204
+ return data
205
+
206
+
207
+ def load_wav_to_torch(full_path):
208
+ sampling_rate, data = read(full_path)
209
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
210
+
211
+
212
+ def load_filepaths_and_text(filename, split="|"):
213
+ with open(filename, encoding="utf-8") as f:
214
+ filepaths_and_text = [line.strip().split(split) for line in f]
215
+ return filepaths_and_text
216
+
217
+
218
+ def get_hparams(init=True):
219
+ parser = argparse.ArgumentParser()
220
+ parser.add_argument(
221
+ "-c",
222
+ "--config",
223
+ type=str,
224
+ default="./configs/single_istft.json",
225
+ help="JSON file for configuration",
226
+ )
227
+ parser.add_argument(
228
+ "-m", "--model", type=str, default="istft-vits", help="Model name"
229
+ )
230
+ parser.add_argument(
231
+ "-n", "--max_epochs", type=int, default=500, help="finetune epochs"
232
+ )
233
+
234
+ parser.add_argument(
235
+ "--cont",
236
+ action='store_true',
237
+ help="whether to continue training on the latest checkpoint",
238
+ )
239
+ parser.add_argument(
240
+ "--twp",
241
+ action="store_true",
242
+ help="whether to train with pretrained model",
243
+ )
244
+
245
+ args = parser.parse_args()
246
+ model_dir = os.path.join("/data/logs/istft", args.model)
247
+
248
+ if not os.path.exists(model_dir):
249
+ os.makedirs(model_dir)
250
+ config_path = args.config
251
+ config_save_path = os.path.join(model_dir, "config.json")
252
+ if init:
253
+ with open(config_path, "r") as f:
254
+ data = f.read()
255
+ with open(config_save_path, "w") as f:
256
+ f.write(data)
257
+ else:
258
+ with open(config_save_path, "r") as f:
259
+ data = f.read()
260
+ config = json.loads(data)
261
+
262
+ hparams = HParams(**config)
263
+ hparams.model_dir = model_dir
264
+ hparams.max_epochs = args.max_epochs
265
+ hparams.cont = args.cont
266
+ hparams.twp = args.twp
267
+ return hparams
268
+
269
+
270
+ def get_hparams_from_dir(model_dir):
271
+ config_save_path = os.path.join(model_dir, "config.json")
272
+ with open(config_save_path, "r") as f:
273
+ data = f.read()
274
+ config = json.loads(data)
275
+
276
+ hparams = HParams(**config)
277
+ hparams.model_dir = model_dir
278
+ return hparams
279
+
280
+
281
+ def get_hparams_from_file(config_path):
282
+ with open(config_path, "r") as f:
283
+ data = f.read()
284
+ config = json.loads(data)
285
+
286
+ hparams = HParams(**config)
287
+ return hparams
288
+
289
+
290
+ def check_git_hash(model_dir):
291
+ source_dir = os.path.dirname(os.path.realpath(__file__))
292
+ if not os.path.exists(os.path.join(source_dir, ".git")):
293
+ logger.warn(
294
+ "{} is not a git repository, therefore hash value comparison will be ignored.".format(
295
+ source_dir
296
+ )
297
+ )
298
+ return
299
+
300
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
301
+
302
+ path = os.path.join(model_dir, "githash")
303
+ if os.path.exists(path):
304
+ saved_hash = open(path).read()
305
+ if saved_hash != cur_hash:
306
+ logger.warn(
307
+ "git hash values are different. {}(saved) != {}(current)".format(
308
+ saved_hash[:8], cur_hash[:8]
309
+ )
310
+ )
311
+ else:
312
+ open(path, "w").write(cur_hash)
313
+
314
+
315
+ def get_logger(model_dir, filename="train.log"):
316
+ global logger
317
+ logger = logging.getLogger(os.path.basename(model_dir))
318
+ logger.setLevel(logging.DEBUG)
319
+
320
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
321
+ if not os.path.exists(model_dir):
322
+ os.makedirs(model_dir)
323
+ h = logging.FileHandler(os.path.join(model_dir, filename))
324
+ h.setLevel(logging.DEBUG)
325
+ h.setFormatter(formatter)
326
+ logger.addHandler(h)
327
+ return logger
328
+
329
+
330
+ class HParams:
331
+ def __init__(self, **kwargs):
332
+ for k, v in kwargs.items():
333
+ if type(v) == dict:
334
+ v = HParams(**v)
335
+ self[k] = v
336
+
337
+ def keys(self):
338
+ return self.__dict__.keys()
339
+
340
+ def items(self):
341
+ return self.__dict__.items()
342
+
343
+ def values(self):
344
+ return self.__dict__.values()
345
+
346
+ def __len__(self):
347
+ return len(self.__dict__)
348
+
349
+ def __getitem__(self, key):
350
+ return getattr(self, key)
351
+
352
+ def __setitem__(self, key, value):
353
+ return setattr(self, key, value)
354
+
355
+ def __contains__(self, key):
356
+ return key in self.__dict__
357
+
358
+ def __repr__(self):
359
+ return self.__dict__.__repr__()