File size: 4,790 Bytes
2645a2e ef0e833 2645a2e ef0e833 2645a2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import subprocess
def download_file(url, output_filename):
command = ['wget', '-O', output_filename, '-q', url]
subprocess.run(command, check=True)
url1 = 'https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_multiclass_256x256/float32/latest/selfie_multiclass_256x256.tflite'
url2 = 'https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_segmenter/float16/latest/selfie_segmenter.tflite'
filename1 = 'selfie_multiclass_256x256.tflite'
filename2 = 'selfie_segmenter.tflite'
download_file(url1, filename1)
download_file(url2, filename2)
import cv2
import mediapipe as mp
import numpy as np
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import random
import gradio as gr
import spaces
import torch
from diffusers import FluxInpaintPipeline
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
bfl_repo="black-forest-labs/FLUX.1-dev"
BG_COLOR = (0, 0, 0) # black
MASK_COLOR = (255, 255, 255) # white
def maskHead(input):
base_options = python.BaseOptions(model_asset_path='selfie_multiclass_256x256.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options,
output_category_mask=True)
with vision.ImageSegmenter.create_from_options(options) as segmenter:
image = mp.Image.create_from_file(input)
segmentation_result = segmenter.segment(image)
hairmask = segmentation_result.confidence_masks[1]
facemask = segmentation_result.confidence_masks[3]
image_data = image.numpy_view()
fg_image = np.zeros(image_data.shape, dtype=np.uint8)
fg_image[:] = MASK_COLOR
bg_image = np.zeros(image_data.shape, dtype=np.uint8)
bg_image[:] = BG_COLOR
combined_mask = np.maximum(hairmask.numpy_view(), facemask.numpy_view())
condition = np.stack((combined_mask,) * 3, axis=-1) > 0.2
output_image = np.where(condition, fg_image, bg_image)
return output_image
def random_positioning(input, output_size=(1024, 1024)):
if input is None:
raise ValueError("Impossible to load image")
scale_factor = random.uniform(0.5, 1.0)
new_size = (int(input.shape[1] * scale_factor), int(input.shape[0] * scale_factor))
resized_image = cv2.resize(input, new_size, interpolation=cv2.INTER_AREA)
background = np.zeros((output_size[1], output_size[0], 3), dtype=np.uint8)
x_offset = random.randint(0, output_size[0] - new_size[0])
y_offset = random.randint(0, output_size[1] - new_size[1])
background[y_offset:y_offset+new_size[1], x_offset:x_offset+new_size[0]] = resized_image
background = np.clip(background, 0, 255)
background = background.astype(np.uint8)
return background
def remove_background(image_path, mask):
image = cv2.imread(image_path)
inverted_mask = cv2.bitwise_not(mask)
_, binary_mask = cv2.threshold(inverted_mask, 127, 255, cv2.THRESH_BINARY)
result = np.zeros_like(image, dtype=np.uint8)
result[binary_mask == 255] = image[binary_mask == 255]
return result
pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16).to(DEVICE)
MAX_SEED = np.iinfo(np.int32).max
TRIGGER = "a photo of TOK"
@spaces.GPU(duration=200)
def execute(image, prompt):
if not prompt :
gr.Info("Please enter a text prompt.")
return None
if not image :
gr.Info("Please upload a image.")
return None
img = cv2.imread(image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
imgs = [ random_positioning(img), random_positioning(img)]
pipe.load_lora_weights("XLabs-AI/flux-RealismLora", weight_name='lora.safetensors')
response = []
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
for image in range(len(imgs)):
current_img = imgs[image]
cv2.imwrite('base_image.jpg', current_img)
mask = maskHead('base_image.jpg')
result = pipe(
prompt=f"{prompt} {TRIGGER}",
image=current_img,
mask_image=mask,
width=1024,
height=1024,
strength=0.85,
generator=generator,
num_inference_steps=28,
max_sequence_length=256,
joint_attention_kwargs={"scale": 0.9},
).images[0]
response.append(result)
return response
iface = gr.Interface(
fn=execute,
inputs=[
gr.Image(type="filepath"),
gr.Textbox(label="Prompt")
],
outputs="gallery"
)
iface.launch(share=True, debug=True)
|