Spaces:
Build error
Build error
File size: 8,733 Bytes
1bc7667 2cadb9a f86ec0c 39e8c88 d34a4b1 9f2368f d34a4b1 2291d30 282bff2 2291d30 de7a593 282bff2 de7a593 78ffdd7 de7a593 f86ec0c de7a593 f86ec0c de7a593 d34a4b1 5785894 419f7c2 606e2d0 083d992 606e2d0 d34a4b1 606e2d0 d34a4b1 606e2d0 d34a4b1 606e2d0 d34a4b1 4d06751 d34a4b1 419f7c2 d34a4b1 ad2b2f8 d34a4b1 4d9a51c d34a4b1 39e8c88 d34a4b1 39e8c88 d34a4b1 4d9a51c 39e8c88 d34a4b1 39e8c88 d34a4b1 4d9a51c 94da72e 39e8c88 d34a4b1 39e8c88 4d9a51c 39e8c88 4d9a51c 39e8c88 d34a4b1 94da72e 39e8c88 4d9a51c 39e8c88 4d9a51c 39e8c88 4d9a51c b21fc0a 7eb60db 4d9a51c 4d06751 39e8c88 4d9a51c a29e50c 39e8c88 787f2e8 d34a4b1 419f7c2 d34a4b1 5e5852c 35d3f47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from huggingface_hub import hf_hub_download, login
import os
import spaces
import gradio as gr
from PIL import Image
import os
import random
token = os.environ.get("HF_TOKEN")
login(token=token)
print("downloading models - 1/4")
hf_hub_download("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors")
print("downloading models - 2/4")
hf_hub_download("XLabs-AI/flux-controlnet-collections", "flux-depth-controlnet.safetensors")
print("downloading models - 3/4")
hf_hub_download("XLabs-AI/flux-ip-adapter", "flux-ip-adapter.safetensors")
print("downloading models - 4/4")
hf_hub_download("XLabs-AI/flux-controlnet-canny", "controlnet.safetensors")
print("downloaded!")
@spaces.GPU(duration=240)
def process_image(lora_path, lora_name, number_of_images, image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
from src.flux.xflux_pipeline import XFluxPipeline
def run_xflux_pipeline(
prompt, image, repo_id, name, device,
model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
neg_prompt="",
negative_image=None,
save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False
):
# Montando os argumentos simulando a linha de comando
class Args:
def __init__(self):
self.prompt = prompt
self.image = image
self.control_type = control_type
self.repo_id = repo_id
self.name = name
self.device = device
self.use_controlnet = use_controlnet
self.model_type = model_type
self.width = width
self.height = height
self.timestep_to_start_cfg = timestep_to_start_cfg
self.num_steps = num_steps
self.true_gs = true_gs
self.guidance = guidance
self.num_images_per_prompt = num_images_per_prompt
self.seed = seed if seed else 123456789
self.neg_prompt = neg_prompt
self.img_prompt = Image.open(image) if use_ip else None
self.neg_img_prompt = Image.open(negative_image) if negative_image and use_ip else None
self.ip_scale = 1.0
self.neg_ip_scale = 1.0
self.local_path = None
self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
self.ip_name = "flux-ip-adapter.safetensors"
self.ip_local_path = None
self.lora_repo_id = lora_repo_id
self.lora_name = lora_name
self.lora_local_path = None
self.offload = False
self.use_ip = use_ip
self.use_lora = use_lora
self.lora_weight = lora_weight
self.save_path = save_path
args = Args()
# Carregar a imagem se fornecida
if args.image:
image = Image.open(args.image)
else:
image = None
# Inicializar o pipeline com os parâmetros necessários
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
# Configurar ControlNet se necessário
if args.use_controlnet:
print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
if args.use_ip:
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
if args.use_lora:
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
# Laço para gerar imagens
images = []
for _ in range(args.num_images_per_prompt):
seed = random.randint(0, 2147483647)
result = xflux_pipeline(
prompt=args.prompt,
controlnet_image=image,
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=seed,
true_gs=args.true_gs,
neg_prompt=args.neg_prompt,
timestep_to_start_cfg=args.timestep_to_start_cfg,
image_prompt=args.img_prompt,
neg_image_prompt=args.neg_img_prompt,
ip_scale=args.ip_scale,
neg_ip_scale=args.neg_ip_scale,
)
images.append(result)
return images
return run_xflux_pipeline(
prompt=prompt,
neg_prompt=neg_prompt,
image=image,
negative_image=negative_image,
lora_weight=lora_weight,
control_type="depth" if use_depth else "hed" if use_hed else "canny",
repo_id="XLabs-AI/flux-controlnet-collections",
name="flux-depth-controlnet.safetensors",
device="cuda",
use_controlnet=use_controlnet,
model_type="flux-dev",
width=1024,
height=1024,
timestep_to_start_cfg=cfg,
num_steps=steps,
num_images_per_prompt=number_of_images,
use_lora=use_lora,
lora_repo_id=lora_path,
lora_name=lora_name,
true_gs=true_gs,
use_ip=use_ip,
guidance=guidance
)
custom_css = """
body {
overflow-y: hidden;
}
.gradio-container {
margin: unset !important;
padding: unset !important;
max-width: unset !important;
}
.gradio-app {
min-height: unset !important;
}
.app {
height: 100%;
}
.app-container {
height: 100vh;
background: rgb(24, 24, 27);
gap: unset;
}
.sidebar {
overflow-y: auto;
height: 100%;
max-width: 500px;
padding: 1rem;
background: rgb(31, 31, 35);
border-right: 1px solid rgb(41, 41, 41);
}
.grid-wrap {
max-height: unset;
overflow-y: unset;
}
.thumbnail-item img {
object-fit: contain;
}
.side_items {
height: auto;
}
.form {
flex-wrap: unset;
height: auto;
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Row(elem_classes="app-container"):
with gr.Column(scale=1, min_width=500, elem_classes="sidebar"):
with gr.Column(elem_classes="side_items"):
input_image = gr.Image(label="Image", type="filepath")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
neg_prompt = gr.Textbox(label="Neg Prompt")
steps = gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps")
use_ip = gr.Checkbox(label="Use IP Adapter")
controlnet = gr.Checkbox(label="Use Controlnet(by default uses canny)", value=True)
use_depth = gr.Checkbox(label="Use depth")
use_hed = gr.Checkbox(label="Use hed")
use_lora = gr.Checkbox(label="Use LORA", value=True)
lora_path = gr.Textbox(label="Lora Path", value="XLabs-AI/flux-lora-collection")
lora_name = gr.Textbox(label="Lora Name", value="realism_lora.safetensors")
lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
number_of_images = gr.Slider(step=1, minimum=0, maximum=4, value=2, label="Number of Images")
true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
guidance = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance")
cfg = gr.Slider(minimum=1, maximum=10, value=1, label="CFG")
negative_image = gr.Image(label="Negative_image", type="filepath")
gr.HTML("""<h1 style="font-size: 1.5rem; font-weight: bold; color: white; text-align: center;">Space By: <a href="https://x.com/EuFountai">EuFountai</a></h1>""")
with gr.Column(scale=2, elem_classes="app"):
output = gr.Gallery(label="Galery output", elem_classes="galery")
submit_btn.click(process_image, inputs=[lora_path, lora_name, number_of_images, input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
if __name__ == '__main__':
demo.launch(share=True, debug=True) |