KiteWind / app.py
gstaff's picture
Add share link support for gradio-lite apps.
73c77f1
raw
history blame
10.2 kB
import logging
import os
import re
import warnings
from pathlib import Path
import gradio as gr
import requests
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Pipeline
from templates import starting_app_code, update_iframe_js, copy_snippet_js, download_code_js, load_js, DemoType, \
copy_share_link_js
# Filter the UserWarning raised by the audio component.
warnings.filterwarnings("ignore", message='Trying to convert audio automatically from int32 to 16-bit int format')
logging.basicConfig(
level=logging.INFO, # Set the logging level to INFO or any other desired level
format="%(asctime)s - %(message)s", # Define the log message format
datefmt="%Y-%m-%d %H:%M:%S", # Define the timestamp format
)
logger = logging.getLogger("my_logger")
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise Exception("HF_TOKEN environment variable is required to call remote API.")
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def init_speech_to_text_model() -> Pipeline:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-medium.en"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
whisper_pipe = init_speech_to_text_model()
code_pattern = re.compile(r'```python\n(.*?)```', re.DOTALL)
def query(payload: dict):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def generate_text(code: str, prompt: str) -> (str, str, str):
logger.info(f"Calling API with prompt:\n{prompt}")
prompt = f"```python\n{code}```\nGiven the code above return only updated code for the following request:\n{prompt}\n<|assistant|>"
params = {"max_new_tokens": 512}
output = query({"inputs": prompt, "parameters": params})
if 'error' in output:
logger.warning(f'Language model call failed: {output["error"]}')
raise gr.Warning(f'Language model call failed: {output["error"]}')
logger.info(f'API RESPONSE\n{output[0]["generated_text"]}')
assistant_reply = output[0]["generated_text"].split('<|assistant|>')[1]
match = re.search(code_pattern, assistant_reply)
if not match:
return assistant_reply, code, None
new_code = match.group(1)
logger.info(f'NEW CODE:\nnew_code')
return assistant_reply, new_code, None
def transcribe(audio: str) -> (str, str):
result = whisper_pipe(audio)
return result["text"], None
def link_copy_notify(code):
gr.Info("Share link copied!")
def copy_notify(code):
gr.Info("App code snippet copied!")
def add_hotkeys() -> str:
return Path("hotkeys.js").read_text()
with gr.Blocks() as demo:
gr.Markdown("<h1 id=\"TEST\" align=\"center\"><a href=\"?\">KiteWind</a> πŸͺπŸƒ</h1>")
gr.Markdown(
"<h4 align=\"center\">Chat-assisted web app creator by <a href=\"https://huggingface.co/gstaff\">@gstaff</a></h4>")
selectedTab = gr.State(value='gradio-lite')
with gr.Tab('Gradio (gradio-lite)') as gradio_lite_tab:
with gr.Row():
with gr.Column():
gr.Markdown("## 1. Run your app in the browser!")
gr.HTML(value='<div id="gradioDemoDiv"></div>')
gr.Markdown("## 2. Customize using voice requests!")
with gr.Row():
with gr.Column():
with gr.Group():
in_audio = gr.Audio(label="Record a voice request (click or press ctrl + ` to start/stop)", source='microphone', type='filepath', elem_classes=["record-btn"])
in_prompt = gr.Textbox(label="Or type a text request and press Enter",
placeholder="Need an idea? Try one of these:\n- Add a button to reverse the name\n- Change the greeting to Spanish\n- Put the reversed name output into a separate textbox")
out_text = gr.TextArea(label="πŸ€– Chat Assistant Response")
clear = gr.ClearButton([in_prompt, in_audio, out_text])
with gr.Column():
code_area = gr.Code(label="App Code - You can also edit directly and then click Update App or ctrl + space",
language='python', value=starting_app_code(DemoType.GRADIO))
update_btn = gr.Button("Update App (Ctrl + Space)", variant="primary", elem_classes=["update-btn"])
code_update_params = {'fn': None, 'inputs': code_area, 'outputs': None,
'_js': update_iframe_js(DemoType.GRADIO)}
gen_text_params = {'fn': generate_text, 'inputs': [code_area, in_prompt],
'outputs': [out_text, code_area]}
transcribe_params = {'fn': transcribe, 'inputs': [in_audio], 'outputs': [in_prompt, in_audio]}
update_btn.click(**code_update_params)
in_prompt.submit(**gen_text_params).then(**code_update_params)
in_audio.stop_recording(**transcribe_params).then(**gen_text_params).then(**code_update_params)
with gr.Row():
with gr.Column():
gr.Markdown("## 3. Export your app to share!")
share_link_btn = gr.Button("πŸ”— Copy share link to clipboard")
share_link_btn.click(link_copy_notify, code_area, None, _js=copy_share_link_js(DemoType.GRADIO))
copy_snippet_btn = gr.Button("βœ‚οΈ Copy app snippet to paste into another page")
copy_snippet_btn.click(copy_notify, code_area, None, _js=copy_snippet_js(DemoType.GRADIO))
download_btn = gr.Button("πŸ—Ž Download app as a standalone file")
download_btn.click(None, code_area, None, _js=download_code_js(DemoType.GRADIO))
with gr.Row():
with gr.Column():
gr.Markdown("## Current limitations")
with gr.Accordion("Click to view", open=False):
gr.Markdown(
"- Only gradio-lite apps using the python standard libraries and gradio are supported\n- The chat hasn't been tuned on gradio library data; it may make mistakes")
with gr.Tab('Streamlit (stlite)') as stlite_tab:
with gr.Row():
with gr.Column():
gr.Markdown("## 1. Run your app in the browser!")
gr.HTML(value='<div id="stliteDemoDiv"></div>')
gr.Markdown("## 2. Customize using voice requests!")
with gr.Row():
with gr.Column():
with gr.Group():
in_audio = gr.Audio(label="Record a voice request (click or press ctrl + ` to start/stop)", source='microphone', type='filepath', elem_classes=["record-btn"])
in_prompt = gr.Textbox(label="Or type a text request and press Enter",
placeholder="Need an idea? Try one of these:\n- Add a button to reverse the name\n- Change the greeting to Spanish\n- Make the button primary")
out_text = gr.TextArea(label="πŸ€– Chat Assistant Response")
clear_btn = gr.ClearButton([in_prompt, in_audio, out_text])
with gr.Column():
code_area = gr.Code(label="App Code - You can also edit directly and then click Update App or ctrl + space",
language='python', value=starting_app_code(DemoType.STREAMLIT))
update_btn = gr.Button("Update App (Ctrl + Space)", variant="primary", elem_classes=["update-btn"])
code_update_params = {'fn': None, 'inputs': code_area, 'outputs': None,
'_js': update_iframe_js(DemoType.STREAMLIT)}
gen_text_params = {'fn': generate_text, 'inputs': [code_area, in_prompt],
'outputs': [out_text, code_area]}
transcribe_params = {'fn': transcribe, 'inputs': [in_audio], 'outputs': [in_prompt, in_audio]}
update_btn.click(**code_update_params)
in_prompt.submit(**gen_text_params).then(**code_update_params)
in_audio.stop_recording(**transcribe_params).then(**gen_text_params).then(**code_update_params)
with gr.Row():
with gr.Column():
gr.Markdown("## 3. Export your app to share!")
copy_snippet_btn = gr.Button("βœ‚οΈ Copy app snippet into paste in another page")
copy_snippet_btn.click(copy_notify, code_area, None, _js=copy_snippet_js(DemoType.STREAMLIT))
download_btn = gr.Button("πŸ—Ž Download app as a standalone file")
download_btn.click(None, code_area, None, _js=download_code_js(DemoType.STREAMLIT))
with gr.Row():
with gr.Column():
gr.Markdown("## Current limitations")
with gr.Accordion("Click to view", open=False):
gr.Markdown(
"- Only Streamlit apps using libraries available in pyodide are supported\n- The chat hasn't been tuned on Streamlit library data; it may make mistakes")
gradio_lite_tab.select(lambda: "gradio-lite", None, selectedTab).then(None, None, None,
_js=load_js(DemoType.GRADIO))
stlite_tab.select(lambda: "stlite", None, selectedTab).then(None, None, None, _js=load_js(DemoType.STREAMLIT))
demo.load(None, None, None, _js=load_js(DemoType.GRADIO))
demo.load(None, None, None, _js=add_hotkeys())
demo.css = "footer {visibility: hidden}"
if __name__ == "__main__":
demo.queue().launch()