|
import os
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import keras
|
|
from keras.layers import Input, Dropout, Dense
|
|
from keras.models import Model
|
|
from keras_vggface.vggface import VGGFace
|
|
|
|
def get_model(image_shape, num_classes, model_weights, unfreeze_layers=-3, drop_rate=0.5):
|
|
|
|
input_layer = Input(shape=image_shape)
|
|
vgg_base_model = VGGFace(include_top = False, input_shape = image_shape, pooling='avg')
|
|
|
|
|
|
for layer in vgg_base_model.layers[:unfreeze_layers]:
|
|
layer.trainable = False
|
|
|
|
for layer in vgg_base_model.layers[unfreeze_layers:]:
|
|
layer.trainable = True
|
|
|
|
x = vgg_base_model(input_layer)
|
|
|
|
x = Dropout(drop_rate)(x)
|
|
output = Dense(num_classes, activation='softmax')(x)
|
|
|
|
model = Model(inputs=[input_layer], outputs=[output], name="Expression_Classifier")
|
|
model.load_weights(model_weights)
|
|
return model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model_path = "vgg_face_weights2.h5"
|
|
model = get_model(
|
|
image_shape = (224, 224, 3),
|
|
num_classes = 6,
|
|
model_weights = model_path
|
|
)
|
|
|
|
print(model.summary()) |