Spaces:
Sleeping
Sleeping
File size: 1,448 Bytes
c7210e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import re
import emoji
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import tensorflow as tf
import keras
vectorizer = keras.layers.TextVectorization(
max_tokens = 2000,
output_sequence_length = 32
)
vectorizer.load_assets('./vectorizer')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
# Get english stopwords
en_stopwords = set(stopwords.words('english'))
# Get the lemmatizer
lemmatizer = WordNetLemmatizer()
def preprocess_text(text):
# Conver the text to lowercase
text = text.lower()
# Replace '#' tags
text = text.replace('#', '')
# Remove the nametags/mentions
text = re.sub(r'@[^\s]+', '', text)
# Remove the hyperlinks
text = re.sub(r'https:\/\/\S+', '', text)
# Remove the leading and trailing spaces
text = text.strip()
# Remove the emojis
text = emoji.demojize(text)
# Tokenize the word to lematize it
tokens = nltk.word_tokenize(text)
lemma_tokens = [lemmatizer.lemmatize(token) for token in tokens]
lemma_tokens = [w for w in lemma_tokens if w not in en_stopwords]
text = ' '.join(lemma_tokens)
tokens = vectorizer(text)
tokens = tf.expand_dims(tokens, axis=0)
return tokens
if __name__ == "__main__":
print(preprocess_text("I am running today")) |