Added app
Browse files- app.py +138 -58
- app_gpu.py +146 -0
app.py
CHANGED
@@ -1,62 +1,142 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
|
6 |
+
choices_base_models = {
|
7 |
+
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'meta-llama/Llama-3.2-3B-Instruct',
|
8 |
+
'groloch/gemma-2-2b-it-PromptEnhancing': 'google/gemma-2-2b-it',
|
9 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'Qwen/Qwen2.5-3B-Instruct',
|
10 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
|
11 |
+
}
|
12 |
+
|
13 |
+
choices_gen_token = {
|
14 |
+
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'assistant',
|
15 |
+
'groloch/gemma-2-2b-it-PromptEnhancing': 'model',
|
16 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'assistant',
|
17 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
|
18 |
+
}
|
19 |
+
|
20 |
+
previous_choice = ''
|
21 |
+
|
22 |
+
model = None
|
23 |
+
tokenizer = None
|
24 |
+
|
25 |
+
|
26 |
+
def load_model(adapter_repo_id: str):
|
27 |
+
global model, tokenizer
|
28 |
+
base_repo_id = choices_base_models[adapter_repo_id]
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(base_repo_id)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(base_repo_id, torch_dtype=torch.bfloat16)
|
32 |
+
|
33 |
+
model.load_adapter(adapter_repo_id)
|
34 |
+
|
35 |
+
def generate(prompt_to_enhance: str,
|
36 |
+
choice: str,
|
37 |
+
max_tokens: float,
|
38 |
+
temperature: float,
|
39 |
+
top_p: float,
|
40 |
+
repetition_penalty: float
|
41 |
+
):
|
42 |
+
if prompt_to_enhance is None or prompt_to_enhance == '':
|
43 |
+
raise gr.Error('Please enter a prompt')
|
44 |
+
global previous_choice
|
45 |
+
|
46 |
+
if choice != previous_choice:
|
47 |
+
previous_choice = choice
|
48 |
+
load_model(choice)
|
49 |
+
|
50 |
+
chat = [
|
51 |
+
{'role' : 'user', 'content': prompt_to_enhance}
|
52 |
+
]
|
53 |
+
|
54 |
+
prompt = tokenizer.apply_chat_template(chat,
|
55 |
+
tokenize=False,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
return_tensors='pt')
|
58 |
+
|
59 |
+
encoding = tokenizer(prompt, return_tensors="pt")
|
60 |
+
|
61 |
+
generation_config = model.generation_config
|
62 |
+
generation_config.do_sample = True
|
63 |
+
generation_config.max_new_tokens = int(max_tokens)
|
64 |
+
generation_config.temperature = float(temperature)
|
65 |
+
generation_config.top_p = float(top_p)
|
66 |
+
generation_config.num_return_sequences = 1
|
67 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
68 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
69 |
+
generation_config.repetition_penalty = float(repetition_penalty)
|
70 |
+
|
71 |
+
with torch.inference_mode():
|
72 |
+
outputs = model.generate(
|
73 |
+
input_ids=encoding.input_ids,
|
74 |
+
attention_mask=encoding.attention_mask,
|
75 |
+
generation_config=generation_config
|
76 |
+
)
|
77 |
+
|
78 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).split(choices_gen_token[choice])[-1]
|
79 |
+
|
80 |
+
|
81 |
+
#
|
82 |
+
# Inputs
|
83 |
+
#
|
84 |
+
model_choice = gr.Dropdown(
|
85 |
+
label='Model choice',
|
86 |
+
choices=['groloch/Llama-3.2-3B-Instruct-PromptEnhancing',
|
87 |
+
'groloch/gemma-2-2b-it-PromptEnhancing',
|
88 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing',
|
89 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing'
|
90 |
+
],
|
91 |
+
value='groloch/Llama-3.2-3B-Instruct-PromptEnhancing'
|
92 |
+
)
|
93 |
+
input_prompt = gr.Text(
|
94 |
+
label='Prompt to enhance'
|
95 |
+
)
|
96 |
+
|
97 |
+
#
|
98 |
+
# Additional inputs
|
99 |
+
#
|
100 |
+
input_max_tokens = gr.Number(
|
101 |
+
label='Max generated tokens',
|
102 |
+
value=64,
|
103 |
+
minimum=16,
|
104 |
+
maximum=128
|
105 |
+
)
|
106 |
+
input_temperature = gr.Number(
|
107 |
+
label='Temperature',
|
108 |
+
value=0.3,
|
109 |
+
minimum=0.0,
|
110 |
+
maximum=1.5,
|
111 |
+
step=0.05
|
112 |
+
)
|
113 |
+
input_top_p = gr.Number(
|
114 |
+
label='Top p',
|
115 |
+
value=0.9,
|
116 |
+
minimum=0.0,
|
117 |
+
maximum=1.0,
|
118 |
+
step=0.05
|
119 |
+
)
|
120 |
+
input_repetition_penalty = gr.Number(
|
121 |
+
label='Repetition penalty',
|
122 |
+
value=2.0,
|
123 |
+
minimum=0.0,
|
124 |
+
maximum=5.0,
|
125 |
+
step=0.1
|
126 |
+
)
|
127 |
+
|
128 |
+
demo = gr.Interface(
|
129 |
+
generate,
|
130 |
+
title='Prompt Enhancing Playground',
|
131 |
+
description='This space is a tool to compare the different prompt enhancing model I have finetuned. \
|
132 |
+
Feel free to experiment as you want !',
|
133 |
+
inputs=[input_prompt, model_choice],
|
134 |
+
additional_inputs=[input_max_tokens,
|
135 |
+
input_temperature,
|
136 |
+
input_top_p,
|
137 |
+
input_repetition_penalty
|
138 |
+
],
|
139 |
+
outputs=['text']
|
140 |
)
|
141 |
|
142 |
|
app_gpu.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
|
6 |
+
choices_base_models = {
|
7 |
+
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'meta-llama/Llama-3.2-3B-Instruct',
|
8 |
+
'groloch/gemma-2-2b-it-PromptEnhancing': 'google/gemma-2-2b-it',
|
9 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'Qwen/Qwen2.5-3B-Instruct',
|
10 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
|
11 |
+
}
|
12 |
+
|
13 |
+
choices_gen_token = {
|
14 |
+
'groloch/Llama-3.2-3B-Instruct-PromptEnhancing': 'assistant',
|
15 |
+
'groloch/gemma-2-2b-it-PromptEnhancing': 'model',
|
16 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing': 'assistant',
|
17 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing': 'ministral/Ministral-3b-instruct'
|
18 |
+
}
|
19 |
+
|
20 |
+
previous_choice = ''
|
21 |
+
|
22 |
+
model = None
|
23 |
+
tokenizer = None
|
24 |
+
|
25 |
+
|
26 |
+
def load_model(adapter_repo_id: str):
|
27 |
+
global model, tokenizer
|
28 |
+
base_repo_id = choices_base_models[adapter_repo_id]
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(base_repo_id)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(base_repo_id, torch_dtype=torch.bfloat16)
|
32 |
+
|
33 |
+
model.load_adapter(adapter_repo_id)
|
34 |
+
|
35 |
+
model.to('cuda')
|
36 |
+
|
37 |
+
def generate(prompt_to_enhance: str,
|
38 |
+
choice: str,
|
39 |
+
max_tokens: float,
|
40 |
+
temperature: float,
|
41 |
+
top_p: float,
|
42 |
+
repetition_penalty: float
|
43 |
+
):
|
44 |
+
if prompt_to_enhance is None or prompt_to_enhance == '':
|
45 |
+
raise gr.Error('Please enter a prompt')
|
46 |
+
global previous_choice
|
47 |
+
|
48 |
+
if choice != previous_choice:
|
49 |
+
previous_choice = choice
|
50 |
+
load_model(choice)
|
51 |
+
|
52 |
+
chat = [
|
53 |
+
{'role' : 'user', 'content': prompt_to_enhance}
|
54 |
+
]
|
55 |
+
|
56 |
+
prompt = tokenizer.apply_chat_template(chat,
|
57 |
+
tokenize=False,
|
58 |
+
add_generation_prompt=True,
|
59 |
+
return_tensors='pt')
|
60 |
+
|
61 |
+
encoding = tokenizer(prompt, return_tensors="pt").to('cuda')
|
62 |
+
|
63 |
+
generation_config = model.generation_config
|
64 |
+
generation_config.do_sample = True
|
65 |
+
generation_config.max_new_tokens = int(max_tokens)
|
66 |
+
generation_config.temperature = float(temperature)
|
67 |
+
generation_config.top_p = float(top_p)
|
68 |
+
generation_config.num_return_sequences = 1
|
69 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
70 |
+
generation_config.eos_token_id = tokenizer.eos_token_id
|
71 |
+
generation_config.repetition_penalty = float(repetition_penalty)
|
72 |
+
|
73 |
+
with torch.inference_mode():
|
74 |
+
outputs = model.generate(
|
75 |
+
input_ids=encoding.input_ids,
|
76 |
+
attention_mask=encoding.attention_mask,
|
77 |
+
generation_config=generation_config
|
78 |
+
)
|
79 |
+
|
80 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).split(choices_gen_token[choice])[-1]
|
81 |
+
|
82 |
+
|
83 |
+
#
|
84 |
+
# Inputs
|
85 |
+
#
|
86 |
+
model_choice = gr.Dropdown(
|
87 |
+
label='Model choice',
|
88 |
+
choices=['groloch/Llama-3.2-3B-Instruct-PromptEnhancing',
|
89 |
+
'groloch/gemma-2-2b-it-PromptEnhancing',
|
90 |
+
'groloch/Qwen2.5-3B-Instruct-PromptEnhancing',
|
91 |
+
'groloch/Ministral-3b-instruct-PromptEnhancing'
|
92 |
+
],
|
93 |
+
value='groloch/Llama-3.2-3B-Instruct-PromptEnhancing'
|
94 |
+
)
|
95 |
+
input_prompt = gr.Text(
|
96 |
+
label='Prompt to enhance'
|
97 |
+
)
|
98 |
+
|
99 |
+
#
|
100 |
+
# Additional inputs
|
101 |
+
#
|
102 |
+
input_max_tokens = gr.Number(
|
103 |
+
label='Max generated tokens',
|
104 |
+
value=64,
|
105 |
+
minimum=16,
|
106 |
+
maximum=128
|
107 |
+
)
|
108 |
+
input_temperature = gr.Number(
|
109 |
+
label='Temperature',
|
110 |
+
value=0.3,
|
111 |
+
minimum=0.0,
|
112 |
+
maximum=1.5,
|
113 |
+
step=0.05
|
114 |
+
)
|
115 |
+
input_top_p = gr.Number(
|
116 |
+
label='Top p',
|
117 |
+
value=0.9,
|
118 |
+
minimum=0.0,
|
119 |
+
maximum=1.0,
|
120 |
+
step=0.05
|
121 |
+
)
|
122 |
+
input_repetition_penalty = gr.Number(
|
123 |
+
label='Repetition penalty',
|
124 |
+
value=2.0,
|
125 |
+
minimum=0.0,
|
126 |
+
maximum=5.0,
|
127 |
+
step=0.1
|
128 |
+
)
|
129 |
+
|
130 |
+
demo = gr.Interface(
|
131 |
+
generate,
|
132 |
+
title='Prompt Enhancing Playground',
|
133 |
+
description='This space is a tool to compare the different prompt enhancing model I have finetuned. \
|
134 |
+
Feel free to experiment as you want !',
|
135 |
+
inputs=[input_prompt, model_choice],
|
136 |
+
additional_inputs=[input_max_tokens,
|
137 |
+
input_temperature,
|
138 |
+
input_top_p,
|
139 |
+
input_repetition_penalty
|
140 |
+
],
|
141 |
+
outputs=['text']
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
demo.launch()
|