search / search.py
chanicpanic's picture
Disable image saving
f7fafc2
import base64
from io import BytesIO
import numpy as np
import streamlit as st
from PIL import Image
import pandas as pd
from datasets import load_dataset
from grascii import GrasciiSearcher, InvalidGrascii, ReverseSearcher
from report import report_dialog
from vision import run_vision
# from save_image import save_image
MAX_GRASCII_LENGTH = 16
@st.cache_data(show_spinner="Loading shorthand images")
def load_images():
ds = load_dataset(
"grascii/gregg-preanniversary-words", split="train", token=st.secrets.HF_TOKEN
)
image_map = {}
for row in ds:
buffered = BytesIO()
row["image"].save(buffered, format="PNG")
b64 = base64.b64encode(buffered.getvalue())
image_map[row["longhand"]] = "data:image/png;base64," + b64.decode("utf-8")
return image_map
image_map = load_images()
def on_submit():
if "grascii_text_box" in st.session_state:
st.session_state["grascii"] = st.session_state["grascii_text_box"]
st.session_state["alternatives"] = {}
def write_grascii_search():
searcher = GrasciiSearcher()
grascii_results = []
search_by = st.radio("Search by", ["text", "image (beta)"], horizontal=True)
with st.form("Grascii Search"):
placeholder = st.empty()
if search_by == "text":
placeholder.text_input(
"Grascii",
value=st.session_state["grascii"],
key="grascii_text_box",
max_chars=MAX_GRASCII_LENGTH,
help="[Grascii Language Reference](https://grascii.readthedocs.io/en/stable/language.html)",
)
else:
with placeholder.container():
image_data = st.file_uploader(
"Image",
type=["png", "jpg"],
help="""
Upload an image of a shorthand form.
At this time, minimal preprocessing is performed on images
before running them through the model. For best results,
upload an image:
- of a closely cropped, single shorthand form
- with the shorthand written in black on a white background
- that does not contain marks beside the shorthand form
""",
)
# save = st.checkbox(
# "Save images I upload for potential inclusion in open-source datasets used to train and improve models",
# key="save_image",
# )
if image_data:
image = Image.open(image_data).convert("RGBA")
background = Image.new("RGBA", image.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image)
arr = np.array([alpha_composite.convert("L")])
predictions = run_vision(arr)
alternatives = {"".join(p): True for p in predictions}
if st.session_state["alternatives"] != alternatives:
st.session_state["alternatives"] = alternatives
st.session_state["grascii"] = "".join(predictions[0])
# if save:
# save_image(image_data.getvalue(), "-".join(predictions[0]))
with st.expander("Options"):
interpretation = st.radio(
"Interpretation",
["best", "all"],
horizontal=True,
help="""
How to intepret ambiguous Grascii strings.
- best: Only search using the best interpretation.
- all: Search using all possible interpretations.
""",
)
uncertainty = st.slider(
"Uncertainty",
min_value=0,
max_value=2,
value=1,
help="""
The uncertainty of the strokes in the Grascii string.
A value of at least 1 is recommended for image searches.
""",
)
fix_first = st.checkbox(
"Fix First", help="Apply an uncertainty of 0 to the first token."
)
search_mode = st.selectbox(
"Search Mode",
["match", "start", "contain"],
help="""
The type of search to perform.
- match: Search for entries that closely match the Grascii string.
- start: Search for entries that start with the Grascii string.
- contain: Search for entries that contain the Grascii string.
""",
)
annotation_mode = st.selectbox(
"Annotation Mode",
["strict", "retain", "discard"],
index=2,
help="""
How to handle Grascii annotations.
- discard: Annotations are discarded.
Search results may contain annotations in any location.
- retain: Annotations in the input must appear in search results.
Other annotations may appear in the results.
- strict: Annotations in the input must appear in search results.
Other annotations may not appear in the results.
""",
)
aspirate_mode = st.selectbox(
"Aspirate Mode",
["strict", "retain", "discard"],
index=2,
help="""
How to handle Grascii asirates (').
- discard: Aspirates are discarded.
Search results may contain aspirates in any location.
- retain: Aspirates in the input must appear in search results.
Other aspirates may appear in the results.
- strict: Aspirates in the input must appear in search results.
Other aspirates may not appear in the results.
""",
)
disjoiner_mode = st.selectbox(
"Disjoiner Mode",
["strict", "retain", "discard"],
index=0,
help="""
How to handle Grascii disjoiners (^).
- discard: Disjoiners are discarded.
Search results may contain disjoiners in any location.
- retain: Disjoiners in the input must appear in search results.
Other disjoiners may appear in the results.
- strict: Disjoiners in the input must appear in search results.
Other disjoiners may not appear in the results.
""",
)
st.form_submit_button("Search", on_click=on_submit)
grascii = st.session_state["grascii"]
if len(grascii) > MAX_GRASCII_LENGTH:
st.error(f"Grascii too long. Max: {MAX_GRASCII_LENGTH} characters")
return
try:
grascii_results = searcher.sorted_search(
grascii=grascii,
interpretation=interpretation,
uncertainty=uncertainty,
fix_first=fix_first,
search_mode=search_mode,
annotation_mode=annotation_mode,
aspirate_mode=aspirate_mode,
disjoiner_mode=disjoiner_mode,
)
except InvalidGrascii as e:
if grascii:
st.error(f"Invalid Grascii\n```\n{e.context}\n```")
else:
if len(st.session_state["alternatives"]) > 1:
st.pills(
"Alternatives",
st.session_state["alternatives"],
key="alternative",
default=grascii,
on_change=on_alternative_selection,
)
write_results(grascii_results, grascii.upper(), "grascii")
def on_alternative_selection():
if st.session_state["alternative"] is None:
st.session_state["alternative"] = st.session_state["grascii"]
else:
st.session_state["grascii"] = st.session_state["alternative"]
@st.fragment
def write_results(results, term, key_prefix):
rows = map(
lambda r: [
r.entry.grascii,
r.entry.translation,
image_map.get(r.entry.translation),
],
results,
)
data = pd.DataFrame(rows)
r = "Results" if len(data) != 1 else "Result"
st.write(f'{len(data)} {r} for "{term}"')
event = st.dataframe(
data,
use_container_width=True,
column_config={
"0": "Grascii",
"1": "Longhand",
"2": st.column_config.ImageColumn("Shorthand", width="medium"),
},
selection_mode="multi-row",
on_select="rerun",
key=key_prefix + "_data_frame",
hide_index=True,
)
selected_rows = event.selection.rows
if st.button(
"Flag Selected Rows",
key=key_prefix + "_report_button",
disabled=len(selected_rows) == 0,
):
report_dialog(data.iloc[selected_rows])
def write_reverse_search():
searcher = ReverseSearcher()
reverse_results = []
with st.form("Reverse Search"):
word = st.text_input("Word(s)")
st.form_submit_button("Search")
if word:
reverse_results = searcher.sorted_search(
reverse=word,
)
if word:
write_results(reverse_results, word, "reverse")