File size: 5,875 Bytes
5c33331
907fc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# type: ignore
import gradio as gr
import random
import matplotlib.pyplot as plt
import pandas as pd
import shap
import xgboost as xgb
from datasets import load_dataset

dataset = load_dataset("scikit-learn/adult-census-income")
X_train = dataset["train"].to_pandas()
_ = X_train.pop("fnlwgt")
_ = X_train.pop("race")
y_train = X_train.pop("income")
y_train = (y_train == ">50K").astype(int)
categorical_columns = [
    "workclass",
    "education",
    "marital.status",
    "occupation",
    "relationship",
    "sex",
    "native.country",
]
X_train = X_train.astype({col: "category" for col in categorical_columns})
data = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
model = xgb.train(params={"objective": "binary:logistic"}, dtrain=data)
explainer = shap.TreeExplainer(model)

def predict(*args):
    df = pd.DataFrame([args], columns=X_train.columns)
    df = df.astype({col: "category" for col in categorical_columns})
    pos_pred = model.predict(xgb.DMatrix(df, enable_categorical=True))
    return {">50K": float(pos_pred[0]), "<=50K": 1 - float(pos_pred[0])}

def interpret(*args):
    df = pd.DataFrame([args], columns=X_train.columns)
    df = df.astype({col: "category" for col in categorical_columns})
    shap_values = explainer.shap_values(xgb.DMatrix(df, enable_categorical=True))
    scores_desc = list(zip(shap_values[0], X_train.columns))
    scores_desc = sorted(scores_desc)
    fig_m = plt.figure(tight_layout=True)
    plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
    plt.title("Feature Shap Values")
    plt.ylabel("Shap Value")
    plt.xlabel("Feature")
    plt.tight_layout()
    return fig_m

unique_class = sorted(X_train["workclass"].unique())
unique_education = sorted(X_train["education"].unique())
unique_marital_status = sorted(X_train["marital.status"].unique())
unique_relationship = sorted(X_train["relationship"].unique())
unique_occupation = sorted(X_train["occupation"].unique())
unique_sex = sorted(X_train["sex"].unique())
unique_country = sorted(X_train["native.country"].unique())

with gr.Blocks() as demo:
    gr.Markdown("""
    **Income Classification with XGBoost 💰**:  This demo uses an XGBoost classifier predicts income based on demographic factors, along with Shapley value-based *explanations*. The [source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability/blob/main/app.py).
    """)
    with gr.Row():
        with gr.Column():
            age = gr.Slider(label="Age", minimum=17, maximum=90, step=1, randomize=True)
            work_class = gr.Dropdown(
                label="Workclass",
                choices=unique_class,
                value=lambda: random.choice(unique_class),
            )
            education = gr.Dropdown(
                label="Education Level",
                choices=unique_education,
                value=lambda: random.choice(unique_education),
            )
            years = gr.Slider(
                label="Years of schooling",
                minimum=1,
                maximum=16,
                step=1,
                randomize=True,
            )
            marital_status = gr.Dropdown(
                label="Marital Status",
                choices=unique_marital_status,
                value=lambda: random.choice(unique_marital_status),
            )
            occupation = gr.Dropdown(
                label="Occupation",
                choices=unique_occupation,
                value=lambda: random.choice(unique_occupation),
            )
            relationship = gr.Dropdown(
                label="Relationship Status",
                choices=unique_relationship,
                value=lambda: random.choice(unique_relationship),
            )
            sex = gr.Dropdown(
                label="Sex", choices=unique_sex, value=lambda: random.choice(unique_sex)
            )
            capital_gain = gr.Slider(
                label="Capital Gain",
                minimum=0,
                maximum=100000,
                step=500,
                randomize=True,
            )
            capital_loss = gr.Slider(
                label="Capital Loss", minimum=0, maximum=10000, step=500, randomize=True
            )
            hours_per_week = gr.Slider(
                label="Hours Per Week Worked", minimum=1, maximum=99, step=1
            )
            country = gr.Dropdown(
                label="Native Country",
                choices=unique_country,
                value=lambda: random.choice(unique_country),
            )
        with gr.Column():
            label = gr.Label()
            plot = gr.Plot()
            with gr.Row():
                predict_btn = gr.Button(value="Predict")
                interpret_btn = gr.Button(value="Explain")
            predict_btn.click(
                predict,
                inputs=[
                    age,
                    work_class,
                    education,
                    years,
                    marital_status,
                    occupation,
                    relationship,
                    sex,
                    capital_gain,
                    capital_loss,
                    hours_per_week,
                    country,
                ],
                outputs=[label],
            )
            interpret_btn.click(
                interpret,
                inputs=[
                    age,
                    work_class,
                    education,
                    years,
                    marital_status,
                    occupation,
                    relationship,
                    sex,
                    capital_gain,
                    capital_loss,
                    hours_per_week,
                    country,
                ],
                outputs=[plot],
            )

demo.launch()