Spaces:
Running
Running
Commit
·
05f5f1a
1
Parent(s):
761a766
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 3.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.48.0
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: text_analysis\n", "### This simple demo takes advantage of Gradio's HighlightedText, JSON and HTML outputs to create a clear NER segmentation.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio spacy"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "os.system('python -m spacy download en_core_web_sm')\n", "import spacy\n", "from spacy import displacy\n", "\n", "nlp = spacy.load(\"en_core_web_sm\")\n", "\n", "def text_analysis(text):\n", " doc = nlp(text)\n", " html = displacy.render(doc, style=\"dep\", page=True)\n", " html = (\n", " \"<div style='max-width:100%; max-height:360px; overflow:auto'>\"\n", " + html\n", " + \"</div>\"\n", " )\n", " pos_count = {\n", " \"char_count\": len(text),\n", " \"token_count\": 0,\n", " }\n", " pos_tokens = []\n", "\n", " for token in doc:\n", " pos_tokens.extend([(token.text, token.pos_), (\" \", None)])\n", "\n", " return pos_tokens, pos_count, html\n", "\n", "demo = gr.Interface(\n", " text_analysis,\n", " gr.Textbox(placeholder=\"Enter sentence here...\"),\n", " [\"highlight\", \"json\", \"html\"],\n", " examples=[\n", " [\"What a beautiful morning for a walk!\"],\n", " [\"It was the best of times, it was the worst of times.\"],\n", " ],\n", ")\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: text_analysis\n", "### This simple demo takes advantage of Gradio's HighlightedText, JSON and HTML outputs to create a clear NER segmentation.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio spacy"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import os\n", "os.system('python -m spacy download en_core_web_sm')\n", "import spacy\n", "from spacy import displacy\n", "\n", "nlp = spacy.load(\"en_core_web_sm\")\n", "\n", "def text_analysis(text):\n", " doc = nlp(text)\n", " html = displacy.render(doc, style=\"dep\", page=True)\n", " html = (\n", " \"<div style='max-width:100%; max-height:360px; overflow:auto'>\"\n", " + html\n", " + \"</div>\"\n", " )\n", " pos_count = {\n", " \"char_count\": len(text),\n", " \"token_count\": 0,\n", " }\n", " pos_tokens = []\n", "\n", " for token in doc:\n", " pos_tokens.extend([(token.text, token.pos_), (\" \", None)])\n", "\n", " return pos_tokens, pos_count, html\n", "\n", "demo = gr.Interface(\n", " text_analysis,\n", " gr.Textbox(placeholder=\"Enter sentence here...\"),\n", " [\"highlight\", \"json\", \"html\"],\n", " examples=[\n", " [\"What a beautiful morning for a walk!\"],\n", " [\"It was the best of times, it was the worst of times.\"],\n", " ],\n", ")\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|