Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: streaming_filter_unified_main
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 5.0.0
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
+
hf_oauth: true
|
12 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@bbf9ba7e997022960c621f72baa891185bd03732#subdirectory=client/python
|
2 |
+
https://gradio-pypi-previews.s3.amazonaws.com/bbf9ba7e997022960c621f72baa891185bd03732/gradio-5.0.0-py3-none-any.whl
|
3 |
+
opencv-python
|
4 |
+
numpy
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: streaming_filter_unified"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio opencv-python numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import cv2\n", "\n", "def transform_cv2(frame, transform):\n", " if transform == \"cartoon\":\n", " # prepare color\n", " img_color = cv2.pyrDown(cv2.pyrDown(frame))\n", " for _ in range(6):\n", " img_color = cv2.bilateralFilter(img_color, 9, 9, 7)\n", " img_color = cv2.pyrUp(cv2.pyrUp(img_color))\n", "\n", " # prepare edges\n", " img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)\n", " img_edges = cv2.adaptiveThreshold(\n", " cv2.medianBlur(img_edges, 7),\n", " 255,\n", " cv2.ADAPTIVE_THRESH_MEAN_C,\n", " cv2.THRESH_BINARY,\n", " 9,\n", " 2,\n", " )\n", " img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)\n", " # combine color and edges\n", " img = cv2.bitwise_and(img_color, img_edges)\n", " return img\n", " elif transform == \"edges\":\n", " # perform edge detection\n", " img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)\n", " return img\n", " else:\n", " return np.flipud(frame)\n", "\n", "\n", "css=\"\"\".my-group {max-width: 500px !important; max-height: 500px !important;}\n", " .my-column {display: flex !important; justify-content: center !important; align-items: center !important};\"\"\"\n", "\n", "with gr.Blocks(css=css) as demo:\n", " with gr.Column(elem_classes=[\"my-column\"]):\n", " with gr.Group(elem_classes=[\"my-group\"]):\n", " transform = gr.Dropdown(choices=[\"cartoon\", \"edges\", \"flip\"],\n", " value=\"flip\", label=\"Transformation\")\n", " input_img = gr.Image(sources=[\"webcam\"], type=\"numpy\", streaming=True)\n", " input_img.stream(transform_cv2, [input_img, transform], [input_img], time_limit=30, stream_every=0.1)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
def transform_cv2(frame, transform):
|
6 |
+
if transform == "cartoon":
|
7 |
+
# prepare color
|
8 |
+
img_color = cv2.pyrDown(cv2.pyrDown(frame))
|
9 |
+
for _ in range(6):
|
10 |
+
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
11 |
+
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
|
12 |
+
|
13 |
+
# prepare edges
|
14 |
+
img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
15 |
+
img_edges = cv2.adaptiveThreshold(
|
16 |
+
cv2.medianBlur(img_edges, 7),
|
17 |
+
255,
|
18 |
+
cv2.ADAPTIVE_THRESH_MEAN_C,
|
19 |
+
cv2.THRESH_BINARY,
|
20 |
+
9,
|
21 |
+
2,
|
22 |
+
)
|
23 |
+
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
|
24 |
+
# combine color and edges
|
25 |
+
img = cv2.bitwise_and(img_color, img_edges)
|
26 |
+
return img
|
27 |
+
elif transform == "edges":
|
28 |
+
# perform edge detection
|
29 |
+
img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
|
30 |
+
return img
|
31 |
+
else:
|
32 |
+
return np.flipud(frame)
|
33 |
+
|
34 |
+
|
35 |
+
css=""".my-group {max-width: 500px !important; max-height: 500px !important;}
|
36 |
+
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
37 |
+
|
38 |
+
with gr.Blocks(css=css) as demo:
|
39 |
+
with gr.Column(elem_classes=["my-column"]):
|
40 |
+
with gr.Group(elem_classes=["my-group"]):
|
41 |
+
transform = gr.Dropdown(choices=["cartoon", "edges", "flip"],
|
42 |
+
value="flip", label="Transformation")
|
43 |
+
input_img = gr.Image(sources=["webcam"], type="numpy", streaming=True)
|
44 |
+
input_img.stream(transform_cv2, [input_img, transform], [input_img], time_limit=30, stream_every=0.1)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
demo.launch()
|