Spaces:
Running
Running
import os | |
import requests | |
import tensorflow as tf | |
import gradio as gr | |
inception_net = tf.keras.applications.MobileNetV2() # load the model | |
# Download human-readable labels for ImageNet. | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
def classify_image(inp): | |
inp = inp.reshape((-1, 224, 224, 3)) | |
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) | |
prediction = inception_net.predict(inp).flatten() | |
return {labels[i]: float(prediction[i]) for i in range(1000)} | |
image = gr.Image() | |
label = gr.Label(num_top_classes=3) | |
demo = gr.Interface( | |
fn=classify_image, | |
inputs=image, | |
outputs=label, | |
examples=[ | |
os.path.join(os.path.dirname(__file__), "images/cheetah1.jpg"), | |
os.path.join(os.path.dirname(__file__), "images/lion.jpg") | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |