Spaces:
Running
Running
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
import open3d as o3d | |
from pathlib import Path | |
import os | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image_path): | |
image_path = Path(image_path) | |
image_raw = Image.open(image_path) | |
image = image_raw.resize( | |
(800, int(800 * image_raw.size[1] / image_raw.size[0])), | |
Image.Resampling.LANCZOS) | |
# prepare image for the model | |
encoding = feature_extractor(image, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
depth_image = (output * 255 / np.max(output)).astype('uint8') | |
try: | |
gltf_path = create_3d_obj(np.array(image), depth_image, image_path) | |
img = Image.fromarray(depth_image) | |
return [img, gltf_path, gltf_path] | |
except Exception as e: | |
gltf_path = create_3d_obj( | |
np.array(image), depth_image, image_path, depth=8) | |
img = Image.fromarray(depth_image) | |
return [img, gltf_path, gltf_path] | |
except: | |
print("Error reconstructing 3D model") | |
raise Exception("Error reconstructing 3D model") | |
def create_3d_obj(rgb_image, depth_image, image_path, depth=10): | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False) | |
w = int(depth_image.shape[1]) | |
h = int(depth_image.shape[0]) | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() | |
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
rgbd_image, camera_intrinsic) | |
print('normals') | |
pcd.normals = o3d.utility.Vector3dVector( | |
np.zeros((1, 3))) # invalidate existing normals | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) | |
pcd.orient_normals_towards_camera_location( | |
camera_location=np.array([0., 0., 1000.])) | |
pcd.transform([[1, 0, 0, 0], | |
[0, -1, 0, 0], | |
[0, 0, -1, 0], | |
[0, 0, 0, 1]]) | |
pcd.transform([[-1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1]]) | |
print('run Poisson surface reconstruction') | |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: | |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True) | |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256 | |
print(f'voxel_size = {voxel_size:e}') | |
mesh = mesh_raw.simplify_vertex_clustering( | |
voxel_size=voxel_size, | |
contraction=o3d.geometry.SimplificationContraction.Average) | |
# vertices_to_remove = densities < np.quantile(densities, 0.001) | |
# mesh.remove_vertices_by_mask(vertices_to_remove) | |
bbox = pcd.get_axis_aligned_bounding_box() | |
mesh_crop = mesh.crop(bbox) | |
gltf_path = f'./{image_path.stem}.gltf' | |
o3d.io.write_triangle_mesh( | |
gltf_path, mesh_crop, write_triangle_uvs=True) | |
return gltf_path | |
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud" | |
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object." | |
examples = [["examples/1-jonathan-borba-CgWTqYxHEkg-unsplash.jpg"]] | |
iface = gr.Interface(fn=process_image, | |
inputs=[gr.Image( | |
type="filepath", label="Input Image")], | |
outputs=[gr.Image(label="predicted depth", type="pil"), | |
gr.Model3D(label="3d mesh reconstruction", clear_color=[ | |
1.0, 1.0, 1.0, 1.0]), | |
gr.File(label="3d gLTF")], | |
title=title, | |
description=description, | |
examples=examples, | |
allow_flagging="never", | |
cache_examples=False) | |
iface.launch(debug=True, enable_queue=False) |