freddyaboulton HF staff commited on
Commit
3ca4962
·
verified ·
1 Parent(s): f3f5d71

Commit 2: Add 50 file(s)

Browse files
demos/image_editor_events/run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " clear_btn = gr.Button(\"Clear\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "def verify_clear(im):\n", " return int(not np.any(im['composite'])), im[\"composite\"]\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " cleared_properly = gr.Number(label=\"cleared properly\")\n", " clear_btn = gr.Button(\"Clear Button\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " ).then(verify_clear,\n", " inputs=im,\n", " outputs=[cleared_properly, im])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/image_editor_events/run.py CHANGED
@@ -1,8 +1,12 @@
1
  import gradio as gr
 
2
 
3
  def predict(im):
4
  return im["composite"]
5
 
 
 
 
6
  with gr.Blocks() as demo:
7
  with gr.Group():
8
  with gr.Row():
@@ -35,7 +39,8 @@ with gr.Blocks() as demo:
35
  label="apply",
36
  elem_id="apply",
37
  )
38
- clear_btn = gr.Button("Clear", elem_id="clear")
 
39
 
40
  im.upload(
41
  lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress="hidden"
@@ -54,7 +59,9 @@ with gr.Blocks() as demo:
54
  lambda: None,
55
  None,
56
  im,
57
- )
 
 
58
 
59
  if __name__ == "__main__":
60
  demo.launch()
 
1
  import gradio as gr
2
+ import numpy as np
3
 
4
  def predict(im):
5
  return im["composite"]
6
 
7
+ def verify_clear(im):
8
+ return int(not np.any(im['composite'])), im["composite"]
9
+
10
  with gr.Blocks() as demo:
11
  with gr.Group():
12
  with gr.Row():
 
39
  label="apply",
40
  elem_id="apply",
41
  )
42
+ cleared_properly = gr.Number(label="cleared properly")
43
+ clear_btn = gr.Button("Clear Button", elem_id="clear")
44
 
45
  im.upload(
46
  lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress="hidden"
 
59
  lambda: None,
60
  None,
61
  im,
62
+ ).then(verify_clear,
63
+ inputs=im,
64
+ outputs=[cleared_properly, im])
65
 
66
  if __name__ == "__main__":
67
  demo.launch()