Commit 2: Add 50 file(s)
Browse files
demos/image_editor_events/run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " clear_btn = gr.Button(\"Clear\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_editor_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "\n", "def predict(im):\n", " return im[\"composite\"]\n", "\n", "def verify_clear(im):\n", " return int(not np.any(im['composite'])), im[\"composite\"]\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Group():\n", " with gr.Row():\n", " im = gr.ImageEditor(\n", " type=\"numpy\",\n", " crop_size=\"1:1\",\n", " elem_id=\"image_editor\",\n", " )\n", " im_preview = gr.Image()\n", " with gr.Group():\n", " with gr.Row():\n", "\n", " n_upload = gr.Label(\n", " 0,\n", " label=\"upload\",\n", " elem_id=\"upload\",\n", " )\n", " n_change = gr.Label(\n", " 0,\n", " label=\"change\",\n", " elem_id=\"change\",\n", " )\n", " n_input = gr.Label(\n", " 0,\n", " label=\"input\",\n", " elem_id=\"input\",\n", " )\n", " n_apply = gr.Label(\n", " 0,\n", " label=\"apply\",\n", " elem_id=\"apply\",\n", " )\n", " cleared_properly = gr.Number(label=\"cleared properly\")\n", " clear_btn = gr.Button(\"Clear Button\", elem_id=\"clear\")\n", "\n", " im.upload(\n", " lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress=\"hidden\"\n", " )\n", " im.change(\n", " lambda x: int(x) + 1, outputs=n_change, inputs=n_change, show_progress=\"hidden\"\n", " )\n", " im.input(\n", " lambda x: int(x) + 1, outputs=n_input, inputs=n_input, show_progress=\"hidden\"\n", " )\n", " im.apply(\n", " lambda x: int(x) + 1, outputs=n_apply, inputs=n_apply, show_progress=\"hidden\"\n", " )\n", " im.change(predict, outputs=im_preview, inputs=im, show_progress=\"hidden\")\n", " clear_btn.click(\n", " lambda: None,\n", " None,\n", " im,\n", " ).then(verify_clear,\n", " inputs=im,\n", " outputs=[cleared_properly, im])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
demos/image_editor_events/run.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
def predict(im):
|
4 |
return im["composite"]
|
5 |
|
|
|
|
|
|
|
6 |
with gr.Blocks() as demo:
|
7 |
with gr.Group():
|
8 |
with gr.Row():
|
@@ -35,7 +39,8 @@ with gr.Blocks() as demo:
|
|
35 |
label="apply",
|
36 |
elem_id="apply",
|
37 |
)
|
38 |
-
|
|
|
39 |
|
40 |
im.upload(
|
41 |
lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress="hidden"
|
@@ -54,7 +59,9 @@ with gr.Blocks() as demo:
|
|
54 |
lambda: None,
|
55 |
None,
|
56 |
im,
|
57 |
-
)
|
|
|
|
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
|
4 |
def predict(im):
|
5 |
return im["composite"]
|
6 |
|
7 |
+
def verify_clear(im):
|
8 |
+
return int(not np.any(im['composite'])), im["composite"]
|
9 |
+
|
10 |
with gr.Blocks() as demo:
|
11 |
with gr.Group():
|
12 |
with gr.Row():
|
|
|
39 |
label="apply",
|
40 |
elem_id="apply",
|
41 |
)
|
42 |
+
cleared_properly = gr.Number(label="cleared properly")
|
43 |
+
clear_btn = gr.Button("Clear Button", elem_id="clear")
|
44 |
|
45 |
im.upload(
|
46 |
lambda x: int(x) + 1, outputs=n_upload, inputs=n_upload, show_progress="hidden"
|
|
|
59 |
lambda: None,
|
60 |
None,
|
61 |
im,
|
62 |
+
).then(verify_clear,
|
63 |
+
inputs=im,
|
64 |
+
outputs=[cleared_properly, im])
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
demo.launch()
|