File size: 6,006 Bytes
a6726fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
import torch
import open_clip

from huggingface_hub import hf_hub_download

torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')

# git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
# git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")

git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")

git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")

# blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
# blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")

# blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
# blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)

blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)

# vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

coca_model, _, coca_transform = open_clip.create_model_and_transforms(
  model_name="coca_ViT-L-14",
  pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)

device = "cuda" if torch.cuda.is_available() else "cpu"

# git_model_base.to(device)
# blip_model_base.to(device)
git_model_large_coco.to(device)
git_model_large_textcaps.to(device)
blip_model_large.to(device)
# vitgpt_model.to(device)
coca_model.to(device)
# blip2_model.to(device)

def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
    inputs = processor(images=image, return_tensors="pt").to(device)

    if use_float_16:
        inputs = inputs.to(torch.float16)
    
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)

    if tokenizer is not None:
        generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    else:
        generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
   
    return generated_caption


def generate_caption_coca(model, transform, image):
    im = transform(image).unsqueeze(0).to(device)
    with torch.no_grad(), torch.cuda.amp.autocast():
        generated = model.generate(im, seq_len=20)
    return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")


def generate_captions(image):
    # caption_git_base = generate_caption(git_processor_base, git_model_base, image)

    caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)

    caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)

    # caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)

    caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)

    # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)

    caption_coca = generate_caption_coca(coca_model, coca_transform, image)

    # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()

    caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()

    return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit

   
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")] 

title = "Interactive demo: comparing image captioning models"
description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"

interface = gr.Interface(fn=generate_captions, 
                         inputs=gr.inputs.Image(type="pil"),
                         outputs=outputs,
                         examples=examples, 
                         title=title,
                         description=description,
                         article=article, 
                         enable_queue=True)
interface.launch(debug=True)