gr8testgad-1 commited on
Commit
221537f
·
verified ·
1 Parent(s): 3056435

Upload 4 files

Browse files
src/Asset/ML/random_forest1_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:215863758e64dca633202e6b92664ca75719e4a94888b7bcd742040bd4026698
3
+ size 51324680
src/Asset/ML/randomforest_pipeline.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac88ccae92249e60ec7fc8bf4463a109d6fb519f2699dc1dd3022f221c1a951
3
+ size 51324680
src/Asset/ML/xgboost_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa00608dd8f2f237edabea7ae8e2ecbe0a0f0daa0e7cffeb3c72c892ff563775
3
+ size 324010
src/app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import joblib
4
+
5
+ # Load the trained pipeline
6
+ pipeline_path = 'src/Asset/ML/randomforest_pipeline.pkl'
7
+ model_pipeline = joblib.load(pipeline_path)
8
+
9
+ # Define your prediction function
10
+ def deposit_subscription_prediction(age, job, marital, education, default, housing, loan, contact, month,
11
+ day_of_week, duration, campaign, pdays, previous, poutcome, emp_var_rate, cons_price_idx,
12
+ cons_conf_idx, euribor3m, nr_employed):
13
+ # Create a DataFrame with the provided inputs
14
+ prediction_data = pd.DataFrame({
15
+ 'age': [age],
16
+ 'job': [job],
17
+ 'marital': [marital],
18
+ 'education': [education],
19
+ 'default': [default],
20
+ 'housing': [housing],
21
+ 'loan': [loan],
22
+ 'contact': [contact],
23
+ 'month': [month],
24
+ 'day_of_week': [day_of_week],
25
+ 'duration': [duration],
26
+ 'campaign': [campaign],
27
+ 'pdays': [pdays],
28
+ 'previous': [previous],
29
+ 'poutcome': [poutcome],
30
+ 'emp_var_rate': [emp_var_rate],
31
+ 'cons_price_idx': [cons_price_idx],
32
+ 'cons_conf_idx': [cons_conf_idx],
33
+ 'euribor3m': [euribor3m],
34
+ 'nr_employed': [nr_employed]
35
+ })
36
+
37
+ # Make predictions using the pipeline
38
+ prediction = model_pipeline.predict(prediction_data)[0]
39
+
40
+ # Map the prediction to a label
41
+ prediction_label = 'Subscribed to Deposit' if prediction == 1 else 'Not Subscribed to Deposit'
42
+
43
+ return prediction_label
44
+
45
+ # Define input components for the Gradio interface
46
+ input_components = [
47
+ gr.Number(label='Age: Enter the age of the customer.', minimum=17, maximum=98),
48
+ gr.Dropdown(choices=['blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'admin.', 'unknown'], label='Job: Select the job type of the customer.'),
49
+ gr.Dropdown(choices=['single', 'married', 'divorced'], label='Marital: Select the marital status of the customer.'),
50
+ gr.Dropdown(choices=['basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown'], label='Education: Select the education level of the customer.'),
51
+ gr.Dropdown(choices=['no', 'yes'], label='Default: Select if the customer has credit in default.'),
52
+ gr.Dropdown(choices=['no', 'yes'], label='Housing: Select if the customer has a housing loan.'),
53
+ gr.Dropdown(choices=['no', 'yes'], label='Loan: Select if the customer has a personal loan.'),
54
+ gr.Dropdown(choices=['cellular', 'telephone', 'unknown'], label='Contact: Select the communication type used for contact.'),
55
+ gr.Dropdown(choices=['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], label='Month: Select the last contact month of the customer.'),
56
+ gr.Dropdown(choices=['mon', 'tue', 'wed', 'thu', 'fri'], label='Day of Week: Select the last contact day of the week.'),
57
+ gr.Number(label='Duration: Enter the duration of the last contact in seconds.', minimum=0, maximum=4918),
58
+ gr.Number(label='Campaign: Enter the number of contacts performed during the campaign.', minimum=1, maximum=56),
59
+ gr.Number(label='Pdays: Enter the number of days since the client was last contacted.', minimum=-1, maximum=999),
60
+ gr.Number(label='Previous: Enter the number of contacts performed before this campaign.', minimum=0, maximum=7),
61
+ gr.Dropdown(choices=['failure', 'nonexistent', 'success', 'unknown'], label='Poutcome: Select the outcome of the previous marketing campaign.'),
62
+ gr.Number(label='Employment Variation Rate: Enter the employment variation rate.', minimum=-3.40, maximum=1.40),
63
+ gr.Number(label='Consumer Price Index: Enter the consumer price index.', minimum=92.0, maximum=95.0),
64
+ gr.Number(label='Consumer Confidence Index: Enter the consumer confidence index.', minimum=-51.0, maximum=-27.0),
65
+ gr.Number(label='Euribor 3 Month Rate: Enter the Euribor 3 month rate.', minimum=0.63, maximum=5.0),
66
+ gr.Number(label='Number of Employees: Enter the number of employees.', minimum=4965, maximum=5228)
67
+ ]
68
+
69
+ # Create and launch the Gradio interface
70
+ iface = gr.Interface(
71
+ fn=deposit_subscription_prediction,
72
+ inputs=input_components,
73
+ outputs="text",
74
+ title="Deposit Subscription Prediction",
75
+ description="Predict whether a customer will subscribe to a term deposit using machine learning. Enter customer information to get a prediction.",
76
+ live=False
77
+ )
78
+
79
+ iface.launch()
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+