Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
from langchain_openai import OpenAI, ChatOpenAI | |
from langchain_openai import OpenAIEmbeddings | |
load_dotenv() | |
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] | |
os.environ["LANGCHAIN_TRACING_V2"]="true" | |
os.environ["LANGCHAIN_API_KEY"] = st.secrets["LANGCHAIN_API_KEY"] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
try: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text | |
except Exception as e: | |
print(f"Error reading page: {e}") | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=750) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
vector_store = FAISS.from_texts(text_chunks, OpenAIEmbeddings()) | |
vector_store.save_local("faiss_index") | |
def get_conversational_chain(): | |
prompt_template = """You are an assistant for teachers. Your objective is to provide | |
comprehensive and accurate responses based on the context provided. Make sure that | |
you generate whole output. | |
context: {context} | |
question: {question} | |
""" | |
model = ChatOpenAI(model="gpt-3.5-turbo") | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question): | |
embeddings = OpenAIEmbeddings() | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
result = "" | |
with st.spinner("Processing..."): | |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
result = response["output_text"] | |
st.session_state.chat_history.append({"role": "assistant", "content": result}) | |
def main(): | |
st.set_page_config("Chat PDF") | |
st.header("AI-powered EduPlanner💁") | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
with st.sidebar: | |
#st.image("pic123.png") | |
st.title("Menu:") | |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
if st.button("Submit & Process"): | |
if pdf_docs: | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Done") | |
else: | |
st.warning("Please upload PDF files first before submitting.") | |
# Display chat history | |
for idx, chat in enumerate(st.session_state.chat_history): | |
with st.chat_message(chat["role"]): | |
st.write(chat["content"]) | |
if chat["role"] == "assistant": | |
st.download_button( | |
label="Download", | |
data=chat["content"], | |
file_name=f"response_{idx}.txt", | |
mime="text/plain", | |
key=f"download_{idx}", | |
) | |
user_question = st.chat_input("Ask a Question from the PDF Files") | |
if user_question: | |
if not pdf_docs: | |
st.warning("Please upload PDF files and process first before asking questions.") | |
else: | |
st.session_state.chat_history.append({"role": "user", "content": user_question}) | |
st.chat_message("user").write(user_question) | |
user_input(user_question) | |
st.experimental_rerun() | |
if __name__ == "__main__": | |
main() | |