rag-bench-evaluation / scripts /evaluate_factual_robustness.py
gourisankar85's picture
Upload 68 files
7a6b1cb verified
raw
history blame
4.06 kB
import json
import tqdm
import logging
from scripts.get_factual_evaluation import get_factual_evaluation
from scripts.groq_client import GroqClient
from scripts.helper import adaptive_delay, ensure_directory_exists, load_used_data
from scripts.prompt import get_factual_prompt
def evaluate_factual_robustness(config):
"""Evaluates negative rejection for a given model by processing predictions and computing scores."""
config['noise_rate'] = 0.4 # Time being to do clarification
model_name = config['model_name']
if model_name in config['models']:
model = GroqClient(plm=config['model_name'])
else:
logging.warning(f"Skipping unknown model: {model_name}")
return
# File paths
base_path = "results/Counterfactual Robustness"
evalue_file = get_factual_evaluation(config)
print(f"Factual pred file {evalue_file}")
output_file = f"{base_path}/output_{config['output_file_extension']}.json"
result_file = f"{base_path}/scores_{config['output_file_extension']}.json"
ensure_directory_exists(output_file)
def process_query(model, data, used_data, output_file):
"""Processes a single query, generates evaluation, and writes the result."""
if data['id'] in used_data and data['query'] == used_data[data['id']]['query'] and data['ans'] == used_data[data['id']]['ans']:
output_file.write(json.dumps(used_data[data['id']], ensure_ascii=False) + '\n')
return used_data[data['id']]
try:
instruction = get_factual_prompt(data['query'], data['prediction'])
# Retry mechanism for evaluation
for attempt in range(1, 4):
evaluation = model.generate(instruction)
if evaluation:
break
adaptive_delay(attempt)
data['evaluation'] = evaluation
print(f"Model Response for Factual robustness: {evaluation}")
output_file.write(json.dumps(data, ensure_ascii=False) + '\n')
return data
except Exception as e:
print(f"Error processing query: {e}")
return None
def calculate_scores(results, config):
"""Calculates and returns rejection rates and other metrics."""
rejecttt = 0
tt = 0
correct_tt = 0
for i in results:
if "has identified" in i['evaluation'] or "Yes" in i['evaluation']:
rejecttt += 1
if 0 not in i['label'] and 1 in i['label']:
correct_tt += 1
if 0 not in i['label'] and 1 in i['label']:
tt += 1
scores = {
'reject_rate': rejecttt/len(results),
'all_rate': (tt)/len(results),
'correct_rate': correct_tt/rejecttt if rejecttt > 0 else 0,
'tt':tt,
'rejecttt':rejecttt,
'correct_tt':correct_tt,
'nums': len(results),
'noise_rate': config['noise_rate'],
}
return scores
used_data = []
results = []
if config['UsePreCalculatedValue']:
logging.info(f"Trying to use pre calculated values for Counterfactual report generation")
used_data = load_used_data(output_file)
else:
logging.info(f"Recalculating the metrics...")
with open(output_file, 'w', encoding='utf-8') as f_out, open(evalue_file, 'r', encoding='utf-8') as f_eval:
for line in tqdm.tqdm(f_eval):
data = json.loads(line)
processed_data = process_query(model, data, used_data, f_out)
if processed_data:
results.append(processed_data)
# Compute scores and save
scores = calculate_scores(results, config)
logging.info(f"Counterfactual Robustness Score: {scores}")
with open(result_file, 'w', encoding='utf-8') as f_result:
json.dump(scores, f_result, ensure_ascii=False, indent=4)