import json import tqdm import logging from scripts.get_factual_evaluation import get_factual_evaluation from scripts.groq_client import GroqClient from scripts.helper import adaptive_delay, ensure_directory_exists, load_used_data from scripts.prompt import get_factual_prompt def evaluate_factual_robustness(config): """Evaluates negative rejection for a given model by processing predictions and computing scores.""" config['noise_rate'] = 0.4 # Time being to do clarification model_name = config['model_name'] if model_name in config['models']: model = GroqClient(plm=config['model_name']) else: logging.warning(f"Skipping unknown model: {model_name}") return # File paths base_path = "results/Counterfactual Robustness" evalue_file = get_factual_evaluation(config) print(f"Factual pred file {evalue_file}") output_file = f"{base_path}/output_{config['output_file_extension']}.json" result_file = f"{base_path}/scores_{config['output_file_extension']}.json" ensure_directory_exists(output_file) def process_query(model, data, used_data, output_file): """Processes a single query, generates evaluation, and writes the result.""" if data['id'] in used_data and data['query'] == used_data[data['id']]['query'] and data['ans'] == used_data[data['id']]['ans']: output_file.write(json.dumps(used_data[data['id']], ensure_ascii=False) + '\n') return used_data[data['id']] try: instruction = get_factual_prompt(data['query'], data['prediction']) # Retry mechanism for evaluation for attempt in range(1, 4): evaluation = model.generate(instruction) if evaluation: break adaptive_delay(attempt) data['evaluation'] = evaluation print(f"Model Response for Factual robustness: {evaluation}") output_file.write(json.dumps(data, ensure_ascii=False) + '\n') return data except Exception as e: print(f"Error processing query: {e}") return None def calculate_scores(results, config): """Calculates and returns rejection rates and other metrics.""" rejecttt = 0 tt = 0 correct_tt = 0 for i in results: if "has identified" in i['evaluation'] or "Yes" in i['evaluation']: rejecttt += 1 if 0 not in i['label'] and 1 in i['label']: correct_tt += 1 if 0 not in i['label'] and 1 in i['label']: tt += 1 scores = { 'reject_rate': rejecttt/len(results), 'all_rate': (tt)/len(results), 'correct_rate': correct_tt/rejecttt if rejecttt > 0 else 0, 'tt':tt, 'rejecttt':rejecttt, 'correct_tt':correct_tt, 'nums': len(results), 'noise_rate': config['noise_rate'], } return scores used_data = [] results = [] if config['UsePreCalculatedValue']: logging.info(f"Trying to use pre calculated values for Counterfactual report generation") used_data = load_used_data(output_file) else: logging.info(f"Recalculating the metrics...") with open(output_file, 'w', encoding='utf-8') as f_out, open(evalue_file, 'r', encoding='utf-8') as f_eval: for line in tqdm.tqdm(f_eval): data = json.loads(line) processed_data = process_query(model, data, used_data, f_out) if processed_data: results.append(processed_data) # Compute scores and save scores = calculate_scores(results, config) logging.info(f"Counterfactual Robustness Score: {scores}") with open(result_file, 'w', encoding='utf-8') as f_result: json.dump(scores, f_result, ensure_ascii=False, indent=4)