gouravgujariya
commited on
Commit
•
ff9d9dc
1
Parent(s):
36f2570
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
file_urls = [
|
9 |
+
'https://shorturl.at/tzN19',
|
10 |
+
'https://shorturl.at/fxET6',
|
11 |
+
'https://rb.gy/ojoohp'
|
12 |
+
]
|
13 |
+
|
14 |
+
def download_file(url, save_name):
|
15 |
+
url = url
|
16 |
+
if not os.path.exists(save_name):
|
17 |
+
file = requests.get(url)
|
18 |
+
open(save_name, 'wb').write(file.content)
|
19 |
+
|
20 |
+
for i, url in enumerate(file_urls):
|
21 |
+
if 'mp4' in file_urls[i]:
|
22 |
+
download_file(
|
23 |
+
file_urls[i],
|
24 |
+
f"video.mp4"
|
25 |
+
)
|
26 |
+
else:
|
27 |
+
download_file(
|
28 |
+
file_urls[i],
|
29 |
+
f"image_{i}.jpg"
|
30 |
+
)
|
31 |
+
|
32 |
+
model = YOLO('best.pt')
|
33 |
+
path = [['image_0.jpg'], ['image_1.jpg']]
|
34 |
+
video_path = [['video.mp4']]
|
35 |
+
|
36 |
+
def show_preds_image(image_path):
|
37 |
+
image = cv2.imread(image_path)
|
38 |
+
outputs = model.predict(source=image_path)
|
39 |
+
results = outputs[0].cpu().numpy()
|
40 |
+
for i, det in enumerate(results.boxes.xyxy):
|
41 |
+
cv2.rectangle(
|
42 |
+
image,
|
43 |
+
(int(det[0]), int(det[1])),
|
44 |
+
(int(det[2]), int(det[3])),
|
45 |
+
color=(0, 0, 255),
|
46 |
+
thickness=2,
|
47 |
+
lineType=cv2.LINE_AA
|
48 |
+
)
|
49 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
50 |
+
|
51 |
+
inputs_image = [
|
52 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
53 |
+
]
|
54 |
+
outputs_image = [
|
55 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
56 |
+
]
|
57 |
+
interface_image = gr.Interface(
|
58 |
+
fn=show_preds_image,
|
59 |
+
inputs=inputs_image,
|
60 |
+
outputs=outputs_image,
|
61 |
+
title="Airport Luggage Weapon Detector app",
|
62 |
+
examples=path,
|
63 |
+
cache_examples=False,
|
64 |
+
)
|
65 |
+
|
66 |
+
def show_preds_video(video_path):
|
67 |
+
cap = cv2.VideoCapture(video_path)
|
68 |
+
while(cap.isOpened()):
|
69 |
+
ret, frame = cap.read()
|
70 |
+
if ret:
|
71 |
+
frame_copy = frame.copy()
|
72 |
+
outputs = model.predict(source=frame)
|
73 |
+
results = outputs[0].cpu().numpy()
|
74 |
+
for i, det in enumerate(results.boxes.xyxy):
|
75 |
+
cv2.rectangle(
|
76 |
+
frame_copy,
|
77 |
+
(int(det[0]), int(det[1])),
|
78 |
+
(int(det[2]), int(det[3])),
|
79 |
+
color=(0, 0, 255),
|
80 |
+
thickness=2,
|
81 |
+
lineType=cv2.LINE_AA
|
82 |
+
)
|
83 |
+
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
84 |
+
|
85 |
+
inputs_video = [
|
86 |
+
gr.components.Video(),
|
87 |
+
|
88 |
+
]
|
89 |
+
outputs_video = [
|
90 |
+
gr.components.Image(),
|
91 |
+
]
|
92 |
+
interface_video = gr.Interface(
|
93 |
+
fn=show_preds_video,
|
94 |
+
inputs=inputs_video,
|
95 |
+
outputs=outputs_video,
|
96 |
+
title="Airport Luggage Weapon Detector",
|
97 |
+
examples=video_path,
|
98 |
+
cache_examples=False,
|
99 |
+
)
|
100 |
+
|
101 |
+
gr.TabbedInterface(
|
102 |
+
[interface_image, interface_video],
|
103 |
+
tab_names=['Image inference', 'Video inference']
|
104 |
+
).queue().launch()
|