|
import gradio as gr |
|
import cv2 |
|
import requests |
|
import os |
|
|
|
from ultralytics import YOLO |
|
|
|
file_urls = ["https://www.dropbox.com/scl/fi/i582tgw95r0f8i8cssmx0/images.jpg?rlkey=fa3d74yaj0bh941jo67n0elns&dl=0" |
|
|
|
] |
|
|
|
def download_file(url, save_name): |
|
url = url |
|
if not os.path.exists(save_name): |
|
file = requests.get(url) |
|
open(save_name, 'wb').write(file.content) |
|
|
|
for i, url in enumerate(file_urls): |
|
if 'mp4' in file_urls[i]: |
|
download_file( |
|
file_urls[i], |
|
f"video.mp4" |
|
) |
|
else: |
|
download_file( |
|
file_urls[i], |
|
f"image_{i}.jpg" |
|
) |
|
|
|
model = YOLO('best.pt') |
|
path = [['images.jpg'],['images_1.png'],['image/i1.png'],['image/i2.png'],['image/i3.png'],['image/i4.png'],['image/i5.png'],['image/i6.png'],['image/i7.png'],['image/i8.png'],['image/i9.png'],['image/i10.png'],['image/i11.png'],['image/i12.png'],['image/i13.png'],['image/i14.png'],['image/i15.png'],['image/i16.png'],['image/i17.png'],['image/i18.png'],['image/i19.png'],['image/i20.png'],['image/i21.png'],['image/i22.png'],['image/i23.png'],['image/i24.png'],['image/i25.png'],['image/i26.png'],['image/i27.png'],['image/i28.png']] |
|
|
|
|
|
def show_preds_image(image_path): |
|
image = cv2.imread(image_path) |
|
outputs = model.predict(source=image_path) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
image, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_image = [ |
|
gr.components.Image(type="filepath", label="Input Image"), |
|
] |
|
outputs_image = [ |
|
gr.components.Image(type="numpy", label="Output Image"), |
|
] |
|
interface_image = gr.Interface( |
|
fn=show_preds_image, |
|
inputs=inputs_image, |
|
outputs=outputs_image, |
|
title="Airport Luggage Weapon Detector app", |
|
examples=path, |
|
cache_examples=False, |
|
) |
|
|
|
def show_preds_video(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame_copy = frame.copy() |
|
outputs = model.predict(source=frame) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
frame_copy, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_video = [ |
|
gr.components.Video(), |
|
|
|
] |
|
outputs_video = [ |
|
gr.components.Image(), |
|
] |
|
interface_video = gr.Interface( |
|
fn=show_preds_video, |
|
inputs=inputs_video, |
|
outputs=outputs_video, |
|
title="Airport Luggage Weapon Detector", |
|
cache_examples=False, |
|
) |
|
|
|
gr.TabbedInterface( |
|
[interface_image, interface_video], |
|
tab_names=['Image inference', 'Video inference'] |
|
).queue().launch() |