|
import gradio as gr |
|
import cv2 |
|
import requests |
|
import os |
|
|
|
from ultralytics import YOLO |
|
|
|
file_urls = [ |
|
'https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2Fray-of-baggage-showing-different-objects-with-different-densities-III-ALGORITHEM_fig2_305264591&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAJ', |
|
'https://www.google.com/url?sa=i&url=https%3A%2F%2Fbitrefine.group%2Faboutcompany%2Fnews%2F251-computer-system-has-learned-to-recognize-x-ray-images-and-alerts-if-it-sees-illegal-items&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAR' |
|
] |
|
|
|
def download_file(url, save_name): |
|
url = url |
|
if not os.path.exists(save_name): |
|
file = requests.get(url) |
|
open(save_name, 'wb').write(file.content) |
|
|
|
for i, url in enumerate(file_urls): |
|
if 'mp4' in file_urls[i]: |
|
download_file( |
|
file_urls[i], |
|
f"video.mp4" |
|
) |
|
else: |
|
download_file( |
|
file_urls[i], |
|
f"image_{i}.jpg" |
|
) |
|
|
|
model = YOLO('airport_scaner.pt') |
|
path = [['image_0.jpg'], ['image_1.jpg']] |
|
|
|
|
|
def show_preds_image(image_path): |
|
image = cv2.imread(image_path) |
|
outputs = model.predict(source=image_path) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
image, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_image = [ |
|
gr.components.Image(type="filepath", label="Input Image"), |
|
] |
|
outputs_image = [ |
|
gr.components.Image(type="numpy", label="Output Image"), |
|
] |
|
interface_image = gr.Interface( |
|
fn=show_preds_image, |
|
inputs=inputs_image, |
|
outputs=outputs_image, |
|
title="Airport Luggage Weapon Detector app", |
|
examples=path, |
|
cache_examples=False, |
|
) |
|
|
|
def show_preds_video(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame_copy = frame.copy() |
|
outputs = model.predict(source=frame) |
|
results = outputs[0].cpu().numpy() |
|
for i, det in enumerate(results.boxes.xyxy): |
|
cv2.rectangle( |
|
frame_copy, |
|
(int(det[0]), int(det[1])), |
|
(int(det[2]), int(det[3])), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) |
|
|
|
inputs_video = [ |
|
gr.components.Video(), |
|
|
|
] |
|
outputs_video = [ |
|
gr.components.Image(), |
|
] |
|
interface_video = gr.Interface( |
|
fn=show_preds_video, |
|
inputs=inputs_video, |
|
outputs=outputs_video, |
|
title="Airport Luggage Weapon Detector", |
|
cache_examples=False, |
|
) |
|
|
|
gr.TabbedInterface( |
|
[interface_image, interface_video], |
|
tab_names=['Image inference', 'Video inference'] |
|
).queue().launch() |