gouravgujariya's picture
Update app.py
82df68c
raw
history blame
3.23 kB
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
'https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2Fray-of-baggage-showing-different-objects-with-different-densities-III-ALGORITHEM_fig2_305264591&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAJ',
'https://www.google.com/url?sa=i&url=https%3A%2F%2Fbitrefine.group%2Faboutcompany%2Fnews%2F251-computer-system-has-learned-to-recognize-x-ray-images-and-alerts-if-it-sees-illegal-items&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAR'
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(
file_urls[i],
f"video.mp4"
)
else:
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = YOLO('airport_scaner.pt')
path = [['image_0.jpg'], ['image_1.jpg']]
# video_path = [['video.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Airport Luggage Weapon Detector app",
examples=path,
cache_examples=False,
)
def show_preds_video(video_path):
cap = cv2.VideoCapture(video_path)
while(cap.isOpened()):
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
inputs_video = [
gr.components.Video(),
]
outputs_video = [
gr.components.Image(),
]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Airport Luggage Weapon Detector",
cache_examples=False,
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch()