File size: 13,173 Bytes
405b910
 
5950dc0
 
 
 
5949885
5950dc0
5949885
5950dc0
 
 
f5658d6
9d720c9
 
 
f5658d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405b910
 
 
 
 
 
 
 
 
 
5950dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405b910
 
5950dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405b910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5950dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5658d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5950dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405b910
5950dc0
 
 
 
 
 
 
405b910
5950dc0
405b910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5950dc0
405b910
 
 
 
 
 
 
 
b162fb8
f5658d6
 
 
 
 
 
 
 
 
 
b162fb8
e90bc6e
 
405b910
 
e90bc6e
5949885
586a110
 
a4bf7ee
586a110
405b910
 
 
586a110
5950dc0
b162fb8
6f40683
b162fb8
5950dc0
 
 
 
 
 
 
405b910
f5658d6
5950dc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import gradio as gr
import random
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from itertools import chain

import os 

import tempfile
from typing import Optional
import numpy as np

import wave
from huggingface_hub import hf_hub_download
from stt import Model

#### STT ###########
########### STT English ##############
state = gr.Variable()

REPO_ID = "mbarnig/lb-de-fr-en-pt-coqui-stt-models"
    
my_title = "STT-ChatGPT-TTS with Coqui"
my_description = "TODO add description and reference: STT base from mbarnig/lb-de-fr-en-pt-coqui-stt-models  - 🐸 [Coqui.ai](https://https://coqui.ai/)."

STT_LANGUAGES = [
   "English",
]

EXAMPLES = [
  ["examples/english.wav", "English", True, "Linda", "every window and roof which could command a view of the horrible performance was occupied"],
]

def reformat_freq(sr, y):
    if sr not in (
        48000,
        16000,
    ):  # Deepspeech only supports 16k, (we convert 48k -> 16k)
        raise ValueError("Unsupported rate", sr)
    if sr == 48000:
        y = (
            ((y / max(np.max(y), 1)) * 32767)
            .reshape((-1, 3))
            .mean(axis=1)
            .astype("int16")
        )
        sr = 16000
    return sr, y

def stt_record(audio_record_buffer):
    #using english model
    acoustic_model = Model(hf_hub_download(repo_id = REPO_ID, filename = "english/model.tflite"))
    scorer_path =  hf_hub_download(repo_id = REPO_ID, filename = "english/huge-vocabulary.scorer")
    _, y = reformat_freq(*audio_record_buffer)  
    scorer = True # use scorer
    if scorer:
        acoustic_model.enableExternalScorer(scorer_path)
        result = acoustic_model.stt(y)
    else:
        acoustic_model.disableExternalScorer()
        result = acoustic_model.stt(y)  
    return result


#emotion_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
#emotion_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-emotion")

def get_emotion(text):
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
  output = model.generate(input_ids=input_ids,max_length=2)
  dec = [tokenizer.decode(ids) for ids in output]
  label = dec[0]
  return label.split()[1]

    
config = AutoConfig.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
model = GPT2LMHeadModel.from_pretrained('gorkemgoknar/gpt2chatbotenglish', config=config)

tokenizer = GPT2Tokenizer.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
tokenizer.model_max_length = 1024

#Dynamic Temperature 
#See experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%25C3%25B6rkem-g%25C3%25B6knar

base_temperature = 1.2
dynamic_temperature_range = 0.15

rand_range = random.uniform(-1 * dynamic_temperature_range , dynamic_temperature_range )
temperature = base_temperature  + rand_range

SPECIAL_TOKENS = ["<bos>", "<eos>", "<speaker1>", "<speaker2>", "<pad>"]

#See document for experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/

def get_chat_response(name,history=[], input_txt = "Hello , what is your name?"):
  
  ai_history = history.copy()

  #ai_history.append(input_txt)
  ai_history_e = [tokenizer.encode(e) for e in ai_history]

  personality = "My name is " + name

  bos, eos, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-1])
  
  #persona first, history next, input text must be at the end
  #[[bos, persona] , [history] , [input]]
  sequence = [[bos]  + tokenizer.encode(personality)] + ai_history_e  + [tokenizer.encode(input_txt)]
  ##[[bos, persona] , [speaker1 .., speakser2 .., speaker1 ... speaker2 ... , [input]]
  sequence = [sequence[0]] + [[speaker2 if (len(sequence)-i) % 2 else speaker1] + s for i, s in enumerate(sequence[1:])]
  
  sequence = list(chain(*sequence))

  #bot_input_ids = tokenizer.encode(personality + tokenizer.eos_token + input_txt + tokenizer.eos_token  , return_tensors='pt')
  sequence_len = len(sequence)

  #optimum response and speed
  chat_history_ids = model.generate(
          torch.tensor(sequence).unsqueeze(0), max_length=50,
          pad_token_id=tokenizer.eos_token_id,  
          no_repeat_ngram_size=3,       
          do_sample=True, 
          top_k=60, 
          top_p=0.8,
          temperature = 1.3
      )
  out_str = tokenizer.decode(chat_history_ids[0][sequence_len:],  skip_special_tokens=True)
  #out_str = tokenizer.decode(chat_history_ids[:, sequence.shape[-1]:][0], skip_special_tokens=False)
  return out_str
  
##you can use anyone from below
'''
| Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy 
| Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup 
| Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius 
| Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith 
| Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead 
| Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine 
| Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller 
| Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben 
| Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock 
| Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott 
| Nicky | Marshall | Korshunov | Troy | Vig | Archie Gates | Doc | Interrogator 
| Ellie | Ted | Peter | Drumlin | Joss | Macready | Childs | Nicholas | Conrad 
| Feingold | Christine | Adam | Barbara | Delia | Lydia | Cathy | Charles | Otho 
| Schaefer | Han | Luke | Leia | Threepio | Vader | Yoda | Lando | Elaine | Striker 
| Dr. Rumack | Kramer | David | Saavik | Kirk | Kruge | Holden | Deckard | Rachael 
| Batty | Sebastian | Sam | Frodo | Pippin | Gandalf | Kay | Edwards | Laurel 
| Edgar | Zed | Jay | Malloy | Plissken | Steve Rogers | Tony Stark | Scott Lang 
| Bruce Banner | Bruce | Edward | Two-Face | Batman | Chase | Alfred | Dick 
| Riddler | Din Djarin | Greef Karga | Kuiil | Ig-11 | Cara Dune | Peli Motto 
| Toro Calican | Ripley | Meredith | Dickie | Marge | Peter | Lambert | Kane 
| Dallas | Ripley | Ash | Parker | Threepio | Luke | Leia | Ben | Han | Common Bob 
| Common Alice | Jack | Tyler | Marla | Dana | Stantz | Venkman | Spengler | Louis 
| Fry | Johns | Riddick | Kirk | Decker | Spock | "Ilia | Indy | Belloq | Marion 
| Brother | Allnut | Rose | Qui-Gon | Jar Jar
'''

MODEL_NAME= "tts_models/multilingual/multi-dataset/your_tts"



def greet(character,your_voice,message,history):
  
  #gradios set_state/get_state had problems on embedded html!
  history = history or {"character": character, "message_history" : [] }
  #gradios set_state/get_state does not persist session for now using global
  #global history
  
  if history["character"] != character:
    #switching character
    history = {"character": character, "message_history" : [] }


  response = get_chat_response(character,history=history["message_history"],input_txt=message)
  os.system('tts --text "'+response+'" --model_name tts_models/multilingual/multi-dataset/your_tts --speaker_wav '+your_voice+' --language_idx "en"') 

  history["message_history"].append((message, response))

  #emotion = get_emotion(response)
  
  html = "<div class='chatbot'>"
  for user_msg, resp_msg in history["message_history"]:
      html += f"<div class='user_msg'>You: {user_msg}</div>"
      html += f"<div class='resp_msg'>{character}: {resp_msg}</div>"
  html += "</div>"

  return html,history,"tts_output.wav"
  


def greet_stt_to_tts(character,your_voice,message,history):
  
  #gradios set_state/get_state had problems on embedded html!
  history = history or {"character": character, "message_history" : [] }
  #gradios set_state/get_state does not persist session for now using global
  #global history
  
  if history["character"] != character:
    #switching character
    history = {"character": character, "message_history" : [] }

  # speech -> text (Whisper)
  message = stt_record(your_voice)

  response = get_chat_response(character,history=history["message_history"],input_txt=message)
  os.system('tts --text "'+response+'" --model_name tts_models/multilingual/multi-dataset/your_tts --speaker_wav '+your_voice+' --language_idx "en"') 

  history["message_history"].append((message, response))

  #emotion = get_emotion(response)
  
  html = "<div class='chatbot'>"
  for user_msg, resp_msg in history["message_history"]:
      html += f"<div class='user_msg'>You: {user_msg}</div>"
      html += f"<div class='resp_msg'>{character}: {resp_msg}</div>"
  html += "</div>"

  return html,history,"tts_output.wav"
    

def greet_textonly(character,message,history):
  
  #gradios set_state/get_state had problems on embedded html!
  history = history or {"character": character, "message_history" : [] }
  #gradios set_state/get_state does not persist session for now using global
  #global history
  
  if history["character"] != character:
    #switching character
    history = {"character": character, "message_history" : [] }


  response = get_chat_response(character,history=history["message_history"],input_txt=message)
 
  history["message_history"].append((message, response))

  #emotion = get_emotion(response)
  
  html = "<div class='chatbot'>"
  for user_msg, resp_msg in history["message_history"]:
      html += f"<div class='user_msg'>You: {user_msg}</div>"
      html += f"<div class='resp_msg'>{character}: {resp_msg}</div>"
  html += "</div>"

  return html,history


personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy"]

examples= ["Gandalf", "What is your name?"]

css="""
    .chatbox {display:flex;flex-direction:column}
    .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
    .user_msg {background-color:cornflowerblue;color:white;align-self:start}
    .resp_msg {background-color:lightgray;align-self:self-end}
"""


#some selected ones are in for demo use
personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy", "Ig-11","Threepio","Tony Stark","Batman","Vizzini"]
title = "Movie Chatbot with Coqui YourTTS"
description = "Chat with your favorite movie characters, making characters voice like you. See Coqui Space for more TTS models https://huggingface.co/spaces/coqui/CoquiTTS"
article = "<p style='text-align: center'><a href='https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/' target='_blank'>AI Goes to Job Interview</a> | <a href='https://www.metayazar.com/' target='_blank'>Metayazar AI Writer</a>  |<a href='https://www.linkedin.com/in/goknar/' target='_blank'>Görkem Göknar</a></p>"

#History not implemented in this demo, use metayazar.com/chatbot for a movie and character dropdown chat interface
##interface = gr.Interface(fn=greet, inputs=[gr.inputs.Dropdown(personality_choices) ,"text"], title=title, description=description, outputs="text")

examples=[['Gandalf','dragon.wav','Who are you sir?',{}]]

history =   {"character": "None", "message_history" : [] }

interface_full = gr.Interface(fn=greet_stt_to_tts,
                        inputs=[gr.inputs.Dropdown(personality_choices),
                                gr.inputs.Audio(source="microphone", type="filepath") ,
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title="Chat with Your Voice", description=description,article=article ,
                        live=True)


interface_mic = gr.Interface(fn=greet,
                        inputs=[gr.inputs.Dropdown(personality_choices),
                                gr.inputs.Audio(source="microphone", type="filepath") ,
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title="Chat with Your Voice", description=description,article=article )


interface_text = gr.Interface(fn=greet,
                               inputs=[gr.inputs.Dropdown(personality_choices),
                                "text", 
                                "state"], 
                        outputs=["html","state"],      
                        css=css, title="Chat Text Only", description=description,article=article)

   
interface_file= gr.Interface(fn=greet_textonly,
                               inputs=[gr.inputs.Dropdown(personality_choices),
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title="Chat with Uploaded file", description=description,article=article )



            
appinterface = gr.TabbedInterface([interface_mic,interface_full,interface_file, interface_text], ["Chat with Mic Record","Chat Speech -> Speech", "Chat with Audio Upload" , "Chat Text only"])      
appinterface.launch()