File size: 11,782 Bytes
138f509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy as np
import torch
import torch.nn.functional as F
import math
import cv2
from scipy.stats import qmc
from easydict import EasyDict as edict
from ..representations.octree import DfsOctree


def intrinsics_to_projection(

        intrinsics: torch.Tensor,

        near: float,

        far: float,

    ) -> torch.Tensor:
    """

    OpenCV intrinsics to OpenGL perspective matrix



    Args:

        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix

        near (float): near plane to clip

        far (float): far plane to clip

    Returns:

        (torch.Tensor): [4, 4] OpenGL perspective matrix

    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = - 2 * cy + 1
    ret[2, 2] = far / (far - near)
    ret[2, 3] = near * far / (near - far)
    ret[3, 2] = 1.
    return ret


def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, used_rank = None, colors_overwrite = None, aux=None, halton_sampler=None):
    """

    Render the scene. 

    

    Background tensor (bg_color) must be on GPU!

    """
    # lazy import
    if 'OctreeTrivecRasterizer' not in globals():
        from diffoctreerast import OctreeVoxelRasterizer, OctreeGaussianRasterizer, OctreeTrivecRasterizer, OctreeDecoupolyRasterizer
    
    # Set up rasterization configuration
    tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
    tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)

    raster_settings = edict(
        image_height=int(viewpoint_camera.image_height),
        image_width=int(viewpoint_camera.image_width),
        tanfovx=tanfovx,
        tanfovy=tanfovy,
        bg=bg_color,
        scale_modifier=scaling_modifier,
        viewmatrix=viewpoint_camera.world_view_transform,
        projmatrix=viewpoint_camera.full_proj_transform,
        sh_degree=octree.active_sh_degree,
        campos=viewpoint_camera.camera_center,
        with_distloss=pipe.with_distloss,
        jitter=pipe.jitter,
        debug=pipe.debug,
    )

    positions = octree.get_xyz
    if octree.primitive == "voxel":
        densities = octree.get_density
    elif octree.primitive == "gaussian":
        opacities = octree.get_opacity
    elif octree.primitive == "trivec":
        trivecs = octree.get_trivec
        densities = octree.get_density
        raster_settings.density_shift = octree.density_shift
    elif octree.primitive == "decoupoly":
        decoupolys_V, decoupolys_g = octree.get_decoupoly
        densities = octree.get_density
        raster_settings.density_shift = octree.density_shift
    else:
        raise ValueError(f"Unknown primitive {octree.primitive}")
    depths = octree.get_depth

    # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
    # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
    colors_precomp = None
    shs = octree.get_features
    if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None:
        colors_precomp = colors_overwrite
        shs = None

    ret = edict()

    if octree.primitive == "voxel":
        renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha, distloss = renderer(
            positions = positions,
            densities = densities,
            shs = shs,
            colors_precomp = colors_precomp,
            depths = depths,
            aabb = octree.aabb,
            aux = aux,
        )
        ret['rgb'] = rgb
        ret['depth'] = depth
        ret['alpha'] = alpha
        ret['distloss'] = distloss
    elif octree.primitive == "gaussian":
        renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha = renderer(
            positions = positions,
            opacities = opacities,
            shs = shs,
            colors_precomp = colors_precomp,
            depths = depths,
            aabb = octree.aabb,
            aux = aux,
        )
        ret['rgb'] = rgb
        ret['depth'] = depth
        ret['alpha'] = alpha
    elif octree.primitive == "trivec":
        raster_settings.used_rank = used_rank if used_rank is not None else trivecs.shape[1]
        renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha, percent_depth = renderer(
            positions = positions,
            trivecs = trivecs,
            densities = densities,
            shs = shs,
            colors_precomp = colors_precomp,
            colors_overwrite = colors_overwrite,
            depths = depths,
            aabb = octree.aabb,
            aux = aux,
            halton_sampler = halton_sampler,
        )
        ret['percent_depth'] = percent_depth
        ret['rgb'] = rgb
        ret['depth'] = depth
        ret['alpha'] = alpha
    elif octree.primitive == "decoupoly":
        raster_settings.used_rank = used_rank if used_rank is not None else decoupolys_V.shape[1]
        renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha = renderer(
            positions = positions,
            decoupolys_V = decoupolys_V,
            decoupolys_g = decoupolys_g,
            densities = densities,
            shs = shs,
            colors_precomp = colors_precomp,
            depths = depths,
            aabb = octree.aabb,
            aux = aux,
        )
        ret['rgb'] = rgb
        ret['depth'] = depth
        ret['alpha'] = alpha
    
    return ret


class OctreeRenderer:
    """

    Renderer for the Voxel representation.



    Args:

        rendering_options (dict): Rendering options.

    """

    def __init__(self, rendering_options={}) -> None:
        try:
            import diffoctreerast
        except ImportError:
            print("\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m")
            self.unsupported = True
        else:
            self.unsupported = False
        
        self.pipe = edict({
            "with_distloss": False,
            "with_aux": False,
            "scale_modifier": 1.0,
            "used_rank": None,
            "jitter": False,
            "debug": False,
        })
        self.rendering_options = edict({
            "resolution": None,
            "near": None,
            "far": None,
            "ssaa": 1,
            "bg_color": 'random',
        })
        self.halton_sampler = qmc.Halton(2, scramble=False)
        self.rendering_options.update(rendering_options)
        self.bg_color = None
    
    def render(

            self,

            octree: DfsOctree,

            extrinsics: torch.Tensor,

            intrinsics: torch.Tensor,

            colors_overwrite: torch.Tensor = None,

        ) -> edict:
        """

        Render the octree.



        Args:

            octree (Octree): octree

            extrinsics (torch.Tensor): (4, 4) camera extrinsics

            intrinsics (torch.Tensor): (3, 3) camera intrinsics

            colors_overwrite (torch.Tensor): (N, 3) override color



        Returns:

            edict containing:

                color (torch.Tensor): (3, H, W) rendered color

                depth (torch.Tensor): (H, W) rendered depth

                alpha (torch.Tensor): (H, W) rendered alpha

                distloss (Optional[torch.Tensor]): (H, W) rendered distance loss

                percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth

                aux (Optional[edict]): auxiliary tensors

        """
        resolution = self.rendering_options["resolution"]
        near = self.rendering_options["near"]
        far = self.rendering_options["far"]
        ssaa = self.rendering_options["ssaa"]
        
        if self.unsupported:
            image = np.zeros((512, 512, 3), dtype=np.uint8)
            text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
            origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
            image = cv2.putText(image, "Unsupported", origin, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
            return {
                'color': torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) / 255,
            }
        
        if self.rendering_options["bg_color"] == 'random':
            self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
            if np.random.rand() < 0.5:
                self.bg_color += 1
        else:
            self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")

        if self.pipe["with_aux"]:
            aux = {
                'grad_color2': torch.zeros((octree.num_leaf_nodes, 3), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
                'contributions': torch.zeros((octree.num_leaf_nodes, 1), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
            }
            for k in aux.keys():
                aux[k].requires_grad_()
                aux[k].retain_grad()
        else:
            aux = None

        view = extrinsics
        perspective = intrinsics_to_projection(intrinsics, near, far)
        camera = torch.inverse(view)[:3, 3]
        focalx = intrinsics[0, 0]
        focaly = intrinsics[1, 1]
        fovx = 2 * torch.atan(0.5 / focalx)
        fovy = 2 * torch.atan(0.5 / focaly)
            
        camera_dict = edict({
            "image_height": resolution * ssaa,
            "image_width": resolution * ssaa,
            "FoVx": fovx,
            "FoVy": fovy,
            "znear": near,
            "zfar": far,
            "world_view_transform": view.T.contiguous(),
            "projection_matrix": perspective.T.contiguous(),
            "full_proj_transform": (perspective @ view).T.contiguous(),
            "camera_center": camera
        })

        # Render
        render_ret = render(camera_dict, octree, self.pipe, self.bg_color, aux=aux, colors_overwrite=colors_overwrite, scaling_modifier=self.pipe.scale_modifier, used_rank=self.pipe.used_rank, halton_sampler=self.halton_sampler)

        if ssaa > 1:
            render_ret.rgb = F.interpolate(render_ret.rgb[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
            render_ret.depth = F.interpolate(render_ret.depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
            render_ret.alpha = F.interpolate(render_ret.alpha[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
            if hasattr(render_ret, 'percent_depth'):
                render_ret.percent_depth = F.interpolate(render_ret.percent_depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()

        ret = edict({
            'color': render_ret.rgb,
            'depth': render_ret.depth,
            'alpha': render_ret.alpha,
        })
        if self.pipe["with_distloss"] and 'distloss' in render_ret:
            ret['distloss'] = render_ret.distloss
        if self.pipe["with_aux"]:
            ret['aux'] = aux
        if hasattr(render_ret, 'percent_depth'):
            ret['percent_depth'] = render_ret.percent_depth
        return ret