Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
3 |
-
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
-
|
7 |
from aura_sr import AuraSR
|
8 |
-
import spaces
|
9 |
import torch
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
aura_sr.to("cuda")
|
16 |
-
|
17 |
-
@spaces.GPU
|
18 |
def process_image(input_image):
|
19 |
if input_image is None:
|
20 |
return None
|
21 |
-
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Upscale the image using AuraSR
|
26 |
-
|
|
|
27 |
|
28 |
-
# Convert result to numpy array
|
29 |
result_array = np.array(upscaled_image)
|
30 |
|
31 |
return [input_array, result_array]
|
@@ -34,7 +49,7 @@ with gr.Blocks() as demo:
|
|
34 |
gr.Markdown("# Image Upscaler using AuraSR")
|
35 |
with gr.Row():
|
36 |
with gr.Column(scale=1):
|
37 |
-
input_image = gr.Image(label="Input Image", type="
|
38 |
process_btn = gr.Button("Upscale Image")
|
39 |
with gr.Column(scale=1):
|
40 |
output_slider = ImageSlider(label="Before / After", type="numpy")
|
@@ -45,4 +60,5 @@ with gr.Blocks() as demo:
|
|
45 |
outputs=output_slider
|
46 |
)
|
47 |
|
|
|
48 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
5 |
from aura_sr import AuraSR
|
|
|
6 |
import torch
|
7 |
|
8 |
+
# Initialize the AuraSR model
|
9 |
+
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")
|
10 |
|
11 |
+
# Move the model to CUDA if available, otherwise keep it on CPU
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
aura_sr.to(device)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def process_image(input_image):
|
16 |
if input_image is None:
|
17 |
return None
|
18 |
+
|
19 |
+
# Ensure input_image is a numpy array
|
20 |
+
input_array = np.array(input_image)
|
21 |
+
|
22 |
+
# Convert to PIL Image for resizing
|
23 |
+
pil_image = Image.fromarray(input_array)
|
24 |
+
|
25 |
+
# Resize the longest side to 256 while maintaining aspect ratio
|
26 |
+
width, height = pil_image.size
|
27 |
+
if width > height:
|
28 |
+
new_width = 256
|
29 |
+
new_height = int(height * (256 / width))
|
30 |
+
else:
|
31 |
+
new_height = 256
|
32 |
+
new_width = int(width * (256 / height))
|
33 |
+
|
34 |
+
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
35 |
+
|
36 |
+
# Convert back to numpy array
|
37 |
+
resized_array = np.array(resized_image)
|
38 |
|
39 |
# Upscale the image using AuraSR
|
40 |
+
with torch.no_grad():
|
41 |
+
upscaled_image = aura_sr.upscale_4x(resized_array)
|
42 |
|
43 |
+
# Convert result to numpy array if it's not already
|
44 |
result_array = np.array(upscaled_image)
|
45 |
|
46 |
return [input_array, result_array]
|
|
|
49 |
gr.Markdown("# Image Upscaler using AuraSR")
|
50 |
with gr.Row():
|
51 |
with gr.Column(scale=1):
|
52 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
53 |
process_btn = gr.Button("Upscale Image")
|
54 |
with gr.Column(scale=1):
|
55 |
output_slider = ImageSlider(label="Before / After", type="numpy")
|
|
|
60 |
outputs=output_slider
|
61 |
)
|
62 |
|
63 |
+
|
64 |
demo.launch(debug=True)
|