Spaces:
Sleeping
Sleeping
from flax.jax_utils import replicate | |
from jax import pmap | |
from flax.training.common_utils import shard | |
import jax | |
import jax.numpy as jnp | |
import gradio as gr | |
from PIL import Image | |
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel | |
from pathlib import Path | |
from PIL import Image | |
import numpy as np | |
from diffusers import FlaxStableDiffusionPipeline | |
import os | |
if 'TPU_NAME' in os.environ: | |
import requests | |
if 'TPU_DRIVER_MODE' not in globals(): | |
url = 'http:' + os.environ['TPU_NAME'].split(':')[1] + ':8475/requestversion/tpu_driver_nightly' | |
resp = requests.post(url) | |
TPU_DRIVER_MODE = 1 | |
from jax.config import config | |
config.FLAGS.jax_xla_backend = "tpu_driver" | |
config.FLAGS.jax_backend_target = os.environ['TPU_NAME'] | |
print('Registered TPU:', config.FLAGS.jax_backend_target) | |
else: | |
print('No TPU detected. Can be changed under "Runtime/Change runtime type".') | |
import jax | |
jax.local_devices() | |
num_devices = jax.device_count() | |
device_type = jax.devices()[0].device_kind | |
print(f"Found {num_devices} JAX devices of type {device_type}.") | |
def sd2_inference(pipeline, prompts, params, seed = 42, num_inference_steps = 50 ): | |
prng_seed = jax.random.PRNGKey(seed) | |
prompt_ids = pipeline.prepare_inputs(prompts) | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, jax.device_count()) | |
prompt_ids = shard(prompt_ids) | |
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images | |
images = images.reshape((images.shape[0] * images.shape[1], ) + images.shape[-3:]) | |
images = pipeline.numpy_to_pil(images) | |
return images | |
HF_ACCESS_TOKEN = os.environ["HFAUTH"] | |
# Load Model | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
use_auth_token = HF_ACCESS_TOKEN, | |
revision="bf16", | |
dtype=jnp.bfloat16, | |
) | |
loc = "ydshieh/vit-gpt2-coco-en" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(loc) | |
tokenizer = AutoTokenizer.from_pretrained(loc) | |
model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) | |
gen_kwargs = {"max_length": 16, "num_beams": 4} | |
def generate(pixel_values): | |
output_ids = model.generate(pixel_values, **gen_kwargs).sequences | |
return output_ids | |
def predict(image): | |
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values | |
output_ids = generate(pixel_values) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def image2text(image): | |
preds = predict(image) | |
return (preds[0]) | |
def text_to_image_and_image_to_text(text=None,image=None): | |
txt="" | |
img=None | |
if image != None: | |
txt=image2text(image) | |
if text !="": | |
images = sd2_inference(pipeline, [text], params, seed = 42, num_inference_steps = 5 ) | |
img = images[0] | |
return img,txt | |
if __name__ == '__main__': | |
interFace = gr.Interface(fn=text_to_image_and_image_to_text, | |
inputs=[gr.inputs.Textbox(placeholder="Enter the text to Encode to an image", label="Text to Encode to Image ",lines=1,optional=True),gr.Image(type="pil",label="Image to Decode to text",optional=True)], | |
outputs=[gr.outputs.Image(type="pil", label="Encoded Image"),gr.outputs.Textbox( label="Decoded Text")], | |
title="T2I2T: Text2Image2Text imformation transmiter", | |
description="⭐️The next generation of QR codes, an information sharing tool via images⭐️ Error rates are high & Image generation takes about 200 seconds.", | |
theme='gradio/soft' | |
) | |
interFace.launch() |