Spaces:
Sleeping
Sleeping
File size: 4,839 Bytes
8dd03d6 f021ec0 8dd03d6 f021ec0 8dd03d6 f021ec0 8dd03d6 f021ec0 8dd03d6 f021ec0 8dd03d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import weaviate # vector DB
from openai import OpenAI # LLM
import PyPDF2 # pdf -> text
import numpy as np
from transformers import AutoModel, AutoTokenizer # Model, Tokenzier Load
import gradio as gr # front-end(ui & ux)
from sentence_transformers import SentenceTransformer # embedding
# Weaviate์ ์ฌ์ฉํ ํด๋์ค ์คํค๋ง ์ ์
def create_schema():
class_obj = {
"class": "PdfSentence", # ํด๋์ค๋ช
"properties": [
{
"name": "sentence",
"dataType": ["text"]
},
{
"name": "embedding",
"dataType": ["number[]"] # ๋ฒกํฐ ํ์
}
]
}
# ์คํค๋ง ์์ฑ
db_client.schema.create_class(class_obj)
# ์คํค๋ง ํ์ธ ๋ฐ ์์ฑ / ๊ธฐ์กด์ ์ ์ธํ ์คํค๋ง๊ฐ ์๋ ๊ฒฝ์ฐ -> pass(๋์ด๊ฐ๋ค.)
def ensure_schema():
schema = db_client.schema.get()
classes = [cls["class"] for cls in schema["classes"]]
print(classes)
if "PdfSentence" not in classes:
create_schema()
# ์คํค๋ง๊ฐ ์กด์ฌํ์ง ์์ ๊ฒฝ์ฐ ์์ฑ
# if not client.schema.contains({"class": "PdfSentence"}):
# create_schema()
# PDF ํ
์คํธ ์ถ์ถ ํจ์
def extract_text_from_pdf(pdf):
pdf_reader = PyPDF2.PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
# ํ
์คํธ ์๋ฒ ๋ฉ ์์ฑ ํจ์
def create_embeddings(text, model):
result = model.encode(text)
return result.astype(np.float64).tolist()
# Weaviate์ ๋ฐ์ดํฐ ์ ์ฅ
def store_vectors_in_weaviate(sentences, embed_model):
with db_client.batch as batch:
for sentence in sentences:
try:
embedding = create_embeddings(sentence, embed_model)
# print("embedding", embedding)
# Weaviate์ ๋ฌธ์ฅ๊ณผ ๋ฒกํฐ ์ ์ฅ
data_object = {
"sentence": sentence,
"embedding": embedding
}
batch.add_data_object(data_object, "PdfSentence")
print("success")
except Exception as e:
print(e)
# ์ง๋ฌธ์ ๊ฐ์ฅ ์ ์ฌํ ๋ฌธ์ฅ ์ฐพ๊ธฐ
def find_similar_sentence_in_weaviate(question_embedding):
near_vector = {
"vector": question_embedding
}
result = db_client.query.get("PdfSentence", ["sentence", "embedding"]) \
.with_near_vector(near_vector) \
.do()
# .with_limit(1) \
return result # ๊ฐ์ฅ ๊ฐ๊น์ด ์๋ ๋ฌธ์ฅ์ด ๋ฐํ
# return result['data']['Get']['PdfSentence'][0]['sentence']
def generate_answer(pdf, question):
global embed_model
# PDF ํ
์คํธ ์ถ์ถ
text = extract_text_from_pdf(pdf)
# ํ
์คํธ๋ฅผ ๋ฌธ์ฅ๋ณ๋ก ๋๋๊ธฐ
sentences = text.split('. ')
# ๋ฌธ์ฅ๋ค์ Weaviate์ ์ ์ฅ
store_vectors_in_weaviate(sentences, embed_model)
# ์ง๋ฌธ์ ๋ํ ์๋ฒ ๋ฉ ์์ฑ
question_embedding = create_embeddings(question, embed_model)
# Weaviate์์ ๊ฐ์ฅ ์ ์ฌํ ๋ฌธ์ฅ ์ฐพ๊ธฐ
most_similar_sentence = find_similar_sentence_in_weaviate(question_embedding)
print("debug03")
print(most_similar_sentence)
# OpenAI API๋ก ์๋ต ์์ฑ
ai_client = OpenAI(api_key='sk-TWonV6ldIlpQzTtp5WDW3IiE1mJtQ5eP2p3arsIkDQT3BlbkFJ87T5N5D4WQFHo-QitD7sFOBL6360GxdKTNYpuPbV8A')
response = ai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": f"You are a helpful assistant. Answer based on context: {most_similar_sentence}"},
{"role": "user", "content": question}
]
)
result = response.choices[0].message.content
return result
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
def interface(pdf, question):
return generate_answer(pdf, question)
if __name__=="__main__":
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋
embed_model = SentenceTransformer('xlm-r-100langs-bert-base-nli-stsb-mean-tokens')
# Weaviate ํด๋ผ์ด์ธํธ ์ค์
db_client = weaviate.Client(
url="https://ildmdarvrfcox58ff2tipw.c0.us-west3.gcp.weaviate.cloud", # ํด๋ฌ์คํฐ URL
auth_client_secret=weaviate.AuthApiKey(api_key="SPmVOW99EWg8LkstmLlsKUSuSiHfoefcLQwS"), # API ํค ์ค์
# timeout_config=(5, 150) # ํ์์์ ์ค์ (์ ํ ์ฌํญ)
)
ensure_schema()
# Gradio UI ์์ฑ
with gr.Blocks() as demo:
pdf_input = gr.File(label="Upload PDF", type="filepath")
question_input = gr.Textbox(label="Ask a question", placeholder="What do you want to know?")
output = gr.Textbox(label="Answer")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=interface, inputs=[pdf_input, question_input], outputs=output)
# ์ฑ ์คํ
demo.launch()
|