File size: 8,426 Bytes
e97cf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import ccxt
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import json
from datetime import datetime, timedelta
import pytz
import os
images_folder = '/home/gjin/Documents/zscore/images'
os.makedirs(images_folder, exist_ok=True)


# Prompt for the symbol and time frame
symbols = input('Please input Symbol: ')
timeframe = input("Please input time frame: ")

# Initialize Binance Futures API
binance = ccxt.binance({
    'options': {'defaultType': 'future'},  # Specify futures
})



from tqdm import tqdm
import pandas as pd

def fetch_and_calculate_zscore(symbol, timeframe, since, limit=200, rolling_window=30):
    data = binance.fetch_ohlcv(symbol, timeframe=timeframe, since=since, limit=limit)
    df = pd.DataFrame(data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
    
    # Convert timestamp to UTC datetime format
    df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True)
    
    # Calculate rolling mean, std, and Z-Score
    df['mean'] = df['close'].rolling(window=rolling_window).mean()
    df['std'] = df['close'].rolling(window=rolling_window).std()
    df['z_score'] = (df['close'] - df['mean']) / df['std']
    
    # Initialize signal columns
    df['buy_signal'] = 0
    df['sell_signal'] = 0
    
    # Variables to track thresholds and state
    in_sell_signal = False
    in_buy_signal = False
    crossed_threshold = False  # Track if the extreme threshold has been crossed (2 or -2)
    
    # Iterate through the dataframe to track signals with tqdm progress bar
    for i in tqdm(range(1, len(df)), desc="Processing Z-score signals"):
        current_z = df.loc[i, 'z_score']
        
        # Track when Z-score crosses the thresholds (2 and -2)
        if current_z > 2 and not crossed_threshold:  # If Z-score exceeds 2
            crossed_threshold = True
            in_sell_signal = True  # Trigger sell signal
        
        elif current_z < -2 and not crossed_threshold:  # If Z-score falls below -2
            crossed_threshold = True
            in_buy_signal = True  # Trigger buy signal
        
        # Maintain sell signal between 1 and 2
        if in_sell_signal:
            if 1 <= current_z <= 2:
                df.loc[i, 'sell_signal'] = 1  # Sell signal active
            # Exit sell signal if Z-score falls below 1
            elif current_z < 1:
                in_sell_signal = False
                crossed_threshold = False  # Reset threshold crossing
        
        # Maintain buy signal between -2 and -1
        if in_buy_signal:
            if -2 <= current_z <= -1:
                df.loc[i, 'buy_signal'] = 1  # Buy signal active
            # Exit buy signal if Z-score rises above -1
            elif current_z > -1:
                in_buy_signal = False
                crossed_threshold = False  # Reset threshold crossing
    
    return df






# Convert time to local timezone (Philippine Time)
utc_time = datetime.utcnow()
philippine_tz = pytz.timezone('Asia/Manila')
philippine_time = pytz.utc.localize(utc_time).astimezone(philippine_tz)

# Format the time in your preferred format
formatted_ph_time = philippine_time.strftime("%Y-%m-%d %H:%M:%S")




latest_data  = []
def update_signal_json(symbol, df, json_data):
    # Extract the latest data point from the DataFrame
    global latest_data
    latest_data = df.iloc[-1]  # Update to get the last row

    # Get the timestamp from the latest data and format it
    timestamp = latest_data['timestamp'].strftime("%Y-%m-%d %H:%M:%S") if isinstance(latest_data['timestamp'], pd.Timestamp) else str(latest_data['timestamp'])

    # Check if the latest Z-score has a signal
    signal_status = "True" if latest_data['buy_signal'] == 1 or latest_data['sell_signal'] == 1 else "False"

    # Prepare new entry with real-time Z-Score
    signal_entry = {
        "symbol": symbol,
        "time_frame": timeframe,  # Make sure `timeframe` is defined or passed to this function
        "date_and_time": timestamp,  # Correct timestamp for the entry
        "realtime_ph_time": formatted_ph_time,  # Add the local Philippine time (UTC+8)
        "current_price": latest_data['close'],  # Closing price for the most recent entry
        "zscore": latest_data['z_score'],  # Z-Score value
        "detection": signal_status  # Add signal status
    }

    # Append the new data to the json_data list
    json_data.append(signal_entry)

    return json_data

def plot_data(btcdom_df, pair_df, btc_df):
    fig, ax = plt.subplots(figsize=(14, 7))

    # Clear previous plots
    ax.clear()

    # Plot Z-Scores for all pairs
    ax.plot(btcdom_df['timestamp'], btcdom_df['z_score'], label="BTCDOM/USDT Z-Score", color='blue', linestyle='-')
    ax.plot(pair_df['timestamp'], pair_df['z_score'], label=f"{symbols}/USDT Z-Score", color='orange', linestyle='-')
    ax.plot(btc_df['timestamp'], btc_df['z_score'], label="BTC/USDT Z-Score", color='gray', linestyle='-')
    
    # Add thresholds
    ax.axhline(y=2, color='red', linestyle='--', label='Overbought Threshold')
    ax.axhline(y=-2, color='green', linestyle='--', label='Oversold Threshold')

    # Plot Buy and Sell signals for BTCDOM/USDT
    ax.scatter(btcdom_df[btcdom_df['buy_signal'] == 1]['timestamp'], btcdom_df[btcdom_df['buy_signal'] == 1]['z_score'],
               marker='^', color='green', label='BTCDOM Buy Signal')
    ax.scatter(btcdom_df[btcdom_df['sell_signal'] == 1]['timestamp'], btcdom_df[btcdom_df['sell_signal'] == 1]['z_score'],
               marker='v', color='red', label='BTCDOM Sell Signal')

    # Plot signals for the other pair
    ax.scatter(pair_df[pair_df['buy_signal'] == 1]['timestamp'], pair_df[pair_df['buy_signal'] == 1]['z_score'],
               marker='^', color='green', alpha=0.5, label=f"{symbols} Buy Signal")
    ax.scatter(pair_df[pair_df['sell_signal'] == 1]['timestamp'], pair_df[pair_df['sell_signal'] == 1]['z_score'],
               marker='v', color='red', alpha=0.5, label=f"{symbols} Sell Signal")

    # Format plot
    ax.set_title(f"Z-Scores Signals {timeframe} for {symbols}/USDT Futures", fontsize=16)
    ax.set_xlabel("Time (UTC)", fontsize=12)
    ax.set_ylabel("Z-Score", fontsize=12)
    ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d %H:%M"))
    ax.legend(loc="upper left")
    ax.grid(True)
    plt.xticks(rotation=45)

    # Save each plot with unique filename
    global latest_data
    plot_filename = f"/home/gjin/Documents/zscore/images/zscore_plot_{symbols}_{latest_data['timestamp'].strftime('%Y%m%d_%H%M%S')}.png"
    plt.savefig(plot_filename)
    plt.close(fig)  # Close the figure to prevent memory issues

    # plt.close(fig)  # Close the figure to prevent memory issues

# Function to run historical data processing
def run_historical():
    json_data = []
    try:
        with open(f'signals_{symbols}.json', 'r') as file:
            json_data = json.load(file)
    except FileNotFoundError:
        pass

    # Set start and end dates for the loop
    start_date = datetime(2024, 9, 1)
    end_date = datetime(2024, 11, 27)

    # Loop through each month in the date range (or week, depending on your choice)
    current_date = start_date
    while current_date < end_date:
        # Set 'since' to the start of each month or week (whichever you prefer)
        since = binance.parse8601(current_date.strftime('%Y-%m-%dT%H:%M:%SZ'))

        btcdom_symbol = 'BTCDOM/USDT'
        pair_symbol = f'{symbols}/USDT'
        btc_symbol = 'BTC/USDT'

        # Fetch and process data
        btcdom_df = fetch_and_calculate_zscore(btcdom_symbol, timeframe, since)
        pair_df = fetch_and_calculate_zscore(pair_symbol, timeframe, since)
        btc_df = fetch_and_calculate_zscore(btc_symbol, timeframe, since)

        # Update signals and append to JSON
        json_data = update_signal_json(pair_symbol, pair_df, json_data)
        json_data = update_signal_json(btc_symbol, btc_df, json_data)
        json_data = update_signal_json(btcdom_symbol, btcdom_df, json_data)

        # Save updated signals to JSON
        with open(f'signals{symbols}.json', 'w') as file:
            json.dump(json_data, file, indent=4)

        # Plot the data and save each plot separately
        plot_data(btcdom_df, pair_df, btc_df)

        # Move to the next chunk (next month/week)
        current_date += timedelta(hours=4)

# Start historical data processing
run_historical()