Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import uuid | |
import gradio as gr | |
import spaces | |
from clip_slider_pipeline import CLIPSliderFlux | |
from diffusers import FluxPipeline, AutoencoderTiny | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from diffusers.utils import load_image | |
from diffusers.utils import export_to_video | |
import random | |
from transformers import pipeline | |
# Translation model load | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
# English menu labels | |
english_labels = { | |
"Prompt": "Prompt", | |
"1st direction to steer": "1st Direction", | |
"2nd direction to steer": "2nd Direction", | |
"Strength": "Strength", | |
"Generate directions": "Generate Directions", | |
"Generated Images": "Generated Images", | |
"From 1st to 2nd direction": "From 1st to 2nd Direction", | |
"Strip": "Image Strip", | |
"Looping video": "Looping Video", | |
"Advanced options": "Advanced Options", | |
"Num of intermediate images": "Number of Intermediate Images", | |
"Num iterations for clip directions": "Number of CLIP Direction Iterations", | |
"Num inference steps": "Number of Inference Steps", | |
"Guidance scale": "Guidance Scale", | |
"Randomize seed": "Randomize Seed", | |
"Seed": "Seed" | |
} | |
# Load pipelines | |
base_model = "black-forest-labs/FLUX.1-schnell" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
pipe = FluxPipeline.from_pretrained( | |
base_model, | |
vae=taef1, | |
torch_dtype=torch.bfloat16 | |
) | |
pipe.transformer.to(memory_format=torch.channels_last) | |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
MAX_SEED = 2**32 - 1 | |
def save_images_with_unique_filenames(image_list, save_directory): | |
if not os.path.exists(save_directory): | |
os.makedirs(save_directory) | |
paths = [] | |
for image in image_list: | |
unique_filename = f"{uuid.uuid4()}.png" | |
file_path = os.path.join(save_directory, unique_filename) | |
image.save(file_path) | |
paths.append(file_path) | |
return paths | |
def convert_to_centered_scale(num): | |
if num % 2 == 0: # even | |
start = -(num // 2 - 1) | |
end = num // 2 | |
else: # odd | |
start = -(num // 2) | |
end = num // 2 | |
return tuple(range(start, end + 1)) | |
def translate_if_korean(text): | |
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text): | |
return translator(text)[0]['translation_text'] | |
return text | |
def generate(prompt, | |
concept_1, | |
concept_2, | |
scale, | |
randomize_seed=True, | |
seed=42, | |
recalc_directions=True, | |
iterations=200, | |
steps=3, | |
interm_steps=33, | |
guidance_scale=3.5, | |
x_concept_1="", x_concept_2="", | |
avg_diff_x=None, | |
total_images=[], | |
gradio_progress=gr.Progress()): | |
# Translate prompt and concepts if Korean | |
prompt = translate_if_korean(prompt) | |
concept_1 = translate_if_korean(concept_1) | |
concept_2 = translate_if_korean(concept_2) | |
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}") | |
slider_x = [concept_2, concept_1] | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
gradio_progress(0, desc="Calculating directions...") | |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
else: | |
avg_diff = avg_diff_x | |
images = [] | |
high_scale = scale | |
low_scale = -1 * scale | |
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"): | |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) | |
image = clip_slider.generate( | |
prompt, | |
width=768, | |
height=768, | |
guidance_scale=guidance_scale, | |
scale=cur_scale, | |
seed=seed, | |
num_inference_steps=steps, | |
avg_diff=avg_diff | |
) | |
images.append(image) | |
canvas = Image.new('RGB', (256 * interm_steps, 256)) | |
for i, im in enumerate(images): | |
canvas.paste(im.resize((256, 256)), (256 * i, 0)) | |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
scale_total = convert_to_centered_scale(interm_steps) | |
scale_min = scale_total[0] | |
scale_max = scale_total[-1] | |
scale_middle = scale_total.index(0) | |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
avg_diff_x = avg_diff.cpu() | |
video_path = f"{uuid.uuid4()}.mp4" | |
print(video_path) | |
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed | |
def update_pre_generated_images(slider_value, total_images): | |
number_images = len(total_images) if total_images else 0 | |
if number_images > 0: | |
scale_tuple = convert_to_centered_scale(number_images) | |
return total_images[scale_tuple.index(slider_value)][0] | |
else: | |
return None | |
def reset_recalc_directions(): | |
return True | |
# Five "Time Stream" themed examples (one Korean example included) | |
examples = [ | |
["신선한 토마토가 부패한 토마토로 변해가는 과정", "Fresh", "Rotten", 2.0], | |
["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5], | |
["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5], | |
["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0], | |
["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0] | |
] | |
# CSS for a bright and modern UI with a background image | |
css = """ | |
/* Bright and modern UI with background image */ | |
body { | |
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed; | |
background-size: cover; | |
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; | |
color: #333; | |
} | |
footer { | |
visibility: hidden; | |
} | |
.container { | |
max-width: 1200px; | |
margin: 20px auto; | |
padding: 0 10px; | |
} | |
.main-panel { | |
background-color: rgba(255, 255, 255, 0.9); | |
border-radius: 12px; | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
.controls-panel { | |
background-color: rgba(255, 255, 255, 0.85); | |
border-radius: 8px; | |
padding: 16px; | |
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05); | |
} | |
.image-display { | |
min-height: 400px; | |
display: flex; | |
flex-direction: column; | |
justify-content: center; | |
} | |
.slider-container { | |
padding: 10px 0; | |
} | |
.advanced-panel { | |
margin-top: 20px; | |
border-top: 1px solid #eaeaea; | |
padding-top: 20px; | |
} | |
""" | |
with gr.Blocks(css=css, title="Time Stream") as demo: | |
gr.Markdown("# Time Stream") | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
total_images = gr.State([]) | |
avg_diff_x = gr.State() | |
recalc_directions = gr.State(False) | |
with gr.Row(elem_classes="container"): | |
# Left Column - Controls | |
with gr.Column(scale=4): | |
with gr.Group(elem_classes="main-panel"): | |
gr.Markdown("### Image Generation Controls") | |
with gr.Group(elem_classes="controls-panel"): | |
prompt = gr.Textbox( | |
label=english_labels["Prompt"], | |
info="Enter the description", | |
placeholder="A dog in the park", | |
lines=2 | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
concept_1 = gr.Textbox( | |
label=english_labels["1st direction to steer"], | |
info="Initial state", | |
placeholder="Fresh" | |
) | |
with gr.Column(scale=1): | |
concept_2 = gr.Textbox( | |
label=english_labels["2nd direction to steer"], | |
info="Final state", | |
placeholder="Rotten" | |
) | |
with gr.Row(elem_classes="slider-container"): | |
x = gr.Slider( | |
minimum=0, | |
value=1.75, | |
step=0.1, | |
maximum=4.0, | |
label=english_labels["Strength"], | |
info="Maximum strength for each direction (above 2.5 may be unstable)" | |
) | |
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary") | |
with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
interm_steps = gr.Slider( | |
label=english_labels["Num of intermediate images"], | |
minimum=3, | |
value=7, | |
maximum=65, | |
step=2 | |
) | |
with gr.Column(scale=1): | |
guidance_scale = gr.Slider( | |
label=english_labels["Guidance scale"], | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=3.5 | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
iterations = gr.Slider( | |
label=english_labels["Num iterations for clip directions"], | |
minimum=0, | |
value=200, | |
maximum=400, | |
step=1 | |
) | |
with gr.Column(scale=1): | |
steps = gr.Slider( | |
label=english_labels["Num inference steps"], | |
minimum=1, | |
value=3, | |
maximum=4, | |
step=1 | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
randomize_seed = gr.Checkbox( | |
True, | |
label=english_labels["Randomize seed"] | |
) | |
with gr.Column(scale=1): | |
seed = gr.Slider( | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
label=english_labels["Seed"], | |
interactive=True, | |
randomize=True | |
) | |
# Right Column - Output | |
with gr.Column(scale=8): | |
with gr.Group(elem_classes="main-panel"): | |
gr.Markdown("### Generated Results") | |
# Swapped order: Image strip on top, video below (video is larger) | |
image_strip = gr.Image(label="Image Strip", type="filepath", elem_id="strip", height=200) | |
output_video = gr.Video(label=english_labels["Looping video"], elem_id="video", loop=True, autoplay=True, height=600) | |
with gr.Row(): | |
post_generation_image = gr.Image( | |
label=english_labels["Generated Images"], | |
type="filepath", | |
elem_id="interactive", | |
elem_classes="image-display" | |
) | |
post_generation_slider = gr.Slider( | |
minimum=-10, | |
maximum=10, | |
value=0, | |
step=1, | |
label=english_labels["From 1st to 2nd direction"] | |
) | |
# Examples: 예제 클릭 시 입력란에 값이 바로 삽입됨 | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt, concept_1, concept_2, x] | |
) | |
# Event Handlers | |
submit.click( | |
fn=generate, | |
inputs=[ | |
prompt, concept_1, concept_2, x, randomize_seed, seed, | |
recalc_directions, iterations, steps, interm_steps, | |
guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images | |
], | |
outputs=[ | |
x_concept_1, x_concept_2, avg_diff_x, | |
output_video, # video output | |
image_strip, # canvas (image strip) | |
total_images, | |
post_generation_image, | |
post_generation_slider, | |
seed | |
] | |
) | |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
post_generation_slider.change( | |
fn=update_pre_generated_images, | |
inputs=[post_generation_slider, total_images], | |
outputs=[post_generation_image], | |
queue=False, | |
show_progress="hidden", | |
concurrency_limit=None | |
) | |
if __name__ == "__main__": | |
demo.launch() | |