Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
-
import spaces
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import gradio as gr
|
7 |
|
8 |
-
MODEL_LIST = ["
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
11 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
12 |
|
13 |
-
TITLE = "<h1><center>
|
14 |
|
15 |
DESCRIPTION = f"""
|
16 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
17 |
"""
|
18 |
PLACEHOLDER = """
|
19 |
<center>
|
20 |
-
<p>
|
21 |
</center>
|
22 |
"""
|
23 |
|
@@ -36,13 +35,12 @@ h3 {
|
|
36 |
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
MODEL_ID,
|
39 |
-
torch_dtype=torch.
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
-
model = model.eval()
|
44 |
|
45 |
-
@spaces.GPU()
|
46 |
def stream_chat(
|
47 |
message: str,
|
48 |
history: list,
|
@@ -54,11 +52,11 @@ def stream_chat(
|
|
54 |
):
|
55 |
print(f'message: {message}')
|
56 |
print(f'history: {history}')
|
57 |
-
for resp, history in model.
|
58 |
tokenizer,
|
59 |
query = message,
|
60 |
history = history,
|
61 |
-
|
62 |
do_sample = False if temperature == 0 else True,
|
63 |
top_p = top_p,
|
64 |
top_k = top_k,
|
@@ -92,7 +90,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
92 |
maximum=8192,
|
93 |
step=1,
|
94 |
value=1024,
|
95 |
-
label="Max
|
96 |
render=False,
|
97 |
),
|
98 |
gr.Slider(
|
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import gradio as gr
|
6 |
|
7 |
+
MODEL_LIST = ["openbmb/MiniCPM-1B-sft-bf16", "openbmb/MiniCPM-S-1B-sft"]
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
9 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
10 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
11 |
|
12 |
+
TITLE = "<h1><center>MiniCPM-1B-chat</center></h1>"
|
13 |
|
14 |
DESCRIPTION = f"""
|
15 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
16 |
"""
|
17 |
PLACEHOLDER = """
|
18 |
<center>
|
19 |
+
<p>MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 1.2B parameters excluding embeddings.</p>
|
20 |
</center>
|
21 |
"""
|
22 |
|
|
|
35 |
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
MODEL_ID,
|
38 |
+
torch_dtype=torch.bfloat16,
|
39 |
+
device_map='auto',
|
40 |
+
trust_remote_code=True)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
42 |
|
|
|
43 |
|
|
|
44 |
def stream_chat(
|
45 |
message: str,
|
46 |
history: list,
|
|
|
52 |
):
|
53 |
print(f'message: {message}')
|
54 |
print(f'history: {history}')
|
55 |
+
for resp, history in model.chat(
|
56 |
tokenizer,
|
57 |
query = message,
|
58 |
history = history,
|
59 |
+
max_length = max_new_tokens,
|
60 |
do_sample = False if temperature == 0 else True,
|
61 |
top_p = top_p,
|
62 |
top_k = top_k,
|
|
|
90 |
maximum=8192,
|
91 |
step=1,
|
92 |
value=1024,
|
93 |
+
label="Max Length",
|
94 |
render=False,
|
95 |
),
|
96 |
gr.Slider(
|