Spaces:
Sleeping
Sleeping
File size: 3,960 Bytes
51a7d9e e6367a7 51a7d9e e6367a7 51a7d9e e6367a7 51a7d9e 82b38de e6367a7 51a7d9e b48b00e 51a7d9e bd34f0b 82b38de bd34f0b 51a7d9e bd34f0b 51a7d9e 652ef04 51a7d9e 82b38de bd34f0b fd6304d 51a7d9e fd6304d 3b9cb87 e6367a7 bd34f0b e6367a7 51a7d9e edb9e8a e6367a7 51a7d9e 82b38de 51a7d9e 82b38de 51a7d9e 82b38de 51a7d9e e6367a7 51a7d9e bd34f0b 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import torch
import copy
import gradio as gr
import spaces
from llama_cpp import Llama
import os
from huggingface_hub import hf_hub_download
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "google/gemma-2-27b-it"
MODEL_NAME = MODEL_ID.split("/")[-1]
MODEL_FILE = "gemma-2-27b-it-Q4_K_M.gguf"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
llm = Llama(
model_path=hf_hub_download(
repo_id=os.environ.get(MODEL_ID),
filename=os.environ.get(MODEL_FILE),
),
n_ctx=4096,
n_gpu_layers=-1,
chat_format="gemma",
)
TITLE = "<h1><center>Chatbox</center></h1>"
DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>Gemma is the large language model built by Google.
<br>
Feel free to test without log.
</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
@spaces.GPU(duration=90)
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
output = llm.create_chat_completion(
messages=conversation,
top_k=top_k,
top_p=top_p,
repeat_penalty=penalty,
max_tokens=max_new_tokens,
stream =True,
temperature=temperature,
)
for out in output:
stream = copy.deepcopy(out)
temp += stream["choices"][0]["text"]
yield temp
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=2048,
step=1,
value=1024,
label="Max Tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|