File size: 5,131 Bytes
f16a72f
9303d62
 
 
f16a72f
 
 
 
 
9303d62
f16a72f
 
9303d62
 
 
 
 
 
 
 
f16a72f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9303d62
 
 
 
 
 
 
 
f16a72f
 
 
 
9303d62
f16a72f
 
 
 
 
9303d62
 
 
 
 
 
 
 
 
 
 
f16a72f
 
9303d62
 
 
f16a72f
9303d62
 
 
 
 
 
 
 
f16a72f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9303d62
f16a72f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# app.py
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests
from urllib.parse import quote, unquote
import tempfile

app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'

nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

def translate_korean_to_english(text):
    try:
        url = "https://translate.googleapis.com/translate_a/single"
        params = {
            "client": "gtx", 
            "sl": "ko",
            "tl": "en",
            "dt": "t",
            "q": text.strip()
        }
        response = requests.get(url, params=params)
        if response.status_code == 200:
            translated_text = ' '.join(item[0] for item in response.json()[0] if item[0])
            return translated_text
        else:
            raise Exception(f"Translation API returned status code: {response.status_code}")
    except Exception as e:
        print(f"Translation error: {e}")
        return text

def generate_complete_video(gloss_list, dataset, list_2000_tokens):
    try:
        frames = []
        for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens):
            frame_data = frame.split(b'\r\n\r\n')[1]
            nparr = np.frombuffer(frame_data, np.uint8)
            img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
            frames.append(img)
        
        if not frames:
            raise Exception("No frames generated")

        height, width = frames[0].shape[:2]
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
            temp_path = temp_file.name
            
        out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
        
        for frame in frames:
            out.write(frame)
        out.release()
        
        with open(temp_path, 'rb') as f:
            video_bytes = f.read()
        
        os.remove(temp_path)
        return video_bytes
    except Exception as e:
        print(f"Error generating video: {str(e)}")
        raise

@app.route('/')
def index():
    return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
    if request.method == 'POST':
        input_text = request.form['inputSentence'].strip()
        if not input_text:
            return render_template('error.html', error="Please enter text to translate")
        
        try:
            english_text = translate_korean_to_english(input_text)
            if not english_text:
                raise Exception("Translation failed")
                
            eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
            generated_gloss = eng_to_asl_translator.translate_to_gloss()
            
            gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
            gloss_sentence_before_synonym = " ".join(gloss_list_lower)
            
            gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) 
                         for gloss in gloss_list_lower]
            gloss_sentence_after_synonym = " ".join(gloss_list)
            
            return render_template('result.html',
                                title=app.config['TITLE'],
                                original_sentence=input_text,
                                english_translation=english_text,
                                gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                                gloss_sentence_after_synonym=gloss_sentence_after_synonym)
        except Exception as e:
            return render_template('error.html', error=f"Translation error: {str(e)}")

@app.route('/video_feed')
def video_feed():
    sentence = request.args.get('gloss_sentence_to_display', '')
    gloss_list = sentence.split()
    return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                   mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/download_video/<path:gloss_sentence>')
def download_video(gloss_sentence):
    try:
        decoded_sentence = unquote(gloss_sentence)
        gloss_list = decoded_sentence.split()
        
        if not gloss_list:
            return "No gloss provided", 400
            
        video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
        
        if not video_bytes:
            return "Failed to generate video", 500
            
        return send_file(
            io.BytesIO(video_bytes),
            mimetype='video/mp4',
            as_attachment=True,
            download_name='sign_language.mp4'
        )
    except Exception as e:
        print(f"Download error: {str(e)}")
        return f"Error downloading video: {str(e)}", 500

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)