Spaces:
Building
Building
File size: 5,131 Bytes
f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f 9303d62 f16a72f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# app.py
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests
from urllib.parse import quote, unquote
import tempfile
app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'
nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()
def translate_korean_to_english(text):
try:
url = "https://translate.googleapis.com/translate_a/single"
params = {
"client": "gtx",
"sl": "ko",
"tl": "en",
"dt": "t",
"q": text.strip()
}
response = requests.get(url, params=params)
if response.status_code == 200:
translated_text = ' '.join(item[0] for item in response.json()[0] if item[0])
return translated_text
else:
raise Exception(f"Translation API returned status code: {response.status_code}")
except Exception as e:
print(f"Translation error: {e}")
return text
def generate_complete_video(gloss_list, dataset, list_2000_tokens):
try:
frames = []
for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens):
frame_data = frame.split(b'\r\n\r\n')[1]
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
frames.append(img)
if not frames:
raise Exception("No frames generated")
height, width = frames[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
temp_path = temp_file.name
out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
for frame in frames:
out.write(frame)
out.release()
with open(temp_path, 'rb') as f:
video_bytes = f.read()
os.remove(temp_path)
return video_bytes
except Exception as e:
print(f"Error generating video: {str(e)}")
raise
@app.route('/')
def index():
return render_template('index.html', title=app.config['TITLE'])
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
input_text = request.form['inputSentence'].strip()
if not input_text:
return render_template('error.html', error="Please enter text to translate")
try:
english_text = translate_korean_to_english(input_text)
if not english_text:
raise Exception("Translation failed")
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()]
gloss_sentence_before_synonym = " ".join(gloss_list_lower)
gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens)
for gloss in gloss_list_lower]
gloss_sentence_after_synonym = " ".join(gloss_list)
return render_template('result.html',
title=app.config['TITLE'],
original_sentence=input_text,
english_translation=english_text,
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
except Exception as e:
return render_template('error.html', error=f"Translation error: {str(e)}")
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/download_video/<path:gloss_sentence>')
def download_video(gloss_sentence):
try:
decoded_sentence = unquote(gloss_sentence)
gloss_list = decoded_sentence.split()
if not gloss_list:
return "No gloss provided", 400
video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
if not video_bytes:
return "Failed to generate video", 500
return send_file(
io.BytesIO(video_bytes),
mimetype='video/mp4',
as_attachment=True,
download_name='sign_language.mp4'
)
except Exception as e:
print(f"Download error: {str(e)}")
return f"Error downloading video: {str(e)}", 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)
|