haowu11 commited on
Commit
94c550f
·
verified ·
1 Parent(s): 82de983

Upload controlnet.py

Browse files
Files changed (1) hide show
  1. kolors/models/controlnet.py +887 -0
kolors/models/controlnet.py ADDED
@@ -0,0 +1,887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from torch import nn
19
+ from torch.nn import functional as F
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders.single_file_model import FromOriginalModelMixin
23
+ from diffusers.utils import BaseOutput, logging
24
+ from diffusers.models.attention_processor import (
25
+ ADDED_KV_ATTENTION_PROCESSORS,
26
+ CROSS_ATTENTION_PROCESSORS,
27
+ AttentionProcessor,
28
+ AttnAddedKVProcessor,
29
+ AttnProcessor,
30
+ )
31
+ from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
+ from diffusers.models.modeling_utils import ModelMixin
33
+
34
+ try:
35
+ from diffusers.unets.unet_2d_blocks import (
36
+ CrossAttnDownBlock2D,
37
+ DownBlock2D,
38
+ UNetMidBlock2D,
39
+ UNetMidBlock2DCrossAttn,
40
+ get_down_block,
41
+ )
42
+ from diffusers.unets.unet_2d_condition import UNet2DConditionModel
43
+ except:
44
+ from diffusers.models.unets.unet_2d_blocks import (
45
+ CrossAttnDownBlock2D,
46
+ DownBlock2D,
47
+ UNetMidBlock2D,
48
+ UNetMidBlock2DCrossAttn,
49
+ get_down_block,
50
+ )
51
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
52
+
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+
58
+ @dataclass
59
+ class ControlNetOutput(BaseOutput):
60
+ """
61
+ The output of [`ControlNetModel`].
62
+
63
+ Args:
64
+ down_block_res_samples (`tuple[torch.Tensor]`):
65
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
66
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
67
+ used to condition the original UNet's downsampling activations.
68
+ mid_down_block_re_sample (`torch.Tensor`):
69
+ The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
70
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
71
+ Output can be used to condition the original UNet's middle block activation.
72
+ """
73
+
74
+ down_block_res_samples: Tuple[torch.Tensor]
75
+ mid_block_res_sample: torch.Tensor
76
+
77
+
78
+ class ControlNetConditioningEmbedding(nn.Module):
79
+ """
80
+ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
81
+ [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
82
+ training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
83
+ convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
84
+ (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
85
+ model) to encode image-space conditions ... into feature maps ..."
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ conditioning_embedding_channels: int,
91
+ conditioning_channels: int = 3,
92
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
93
+ ):
94
+ super().__init__()
95
+
96
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
97
+
98
+ self.blocks = nn.ModuleList([])
99
+
100
+ for i in range(len(block_out_channels) - 1):
101
+ channel_in = block_out_channels[i]
102
+ channel_out = block_out_channels[i + 1]
103
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
104
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
105
+
106
+ self.conv_out = zero_module(
107
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
108
+ )
109
+
110
+ def forward(self, conditioning):
111
+ embedding = self.conv_in(conditioning)
112
+ embedding = F.silu(embedding)
113
+
114
+ for block in self.blocks:
115
+ embedding = block(embedding)
116
+ embedding = F.silu(embedding)
117
+
118
+ embedding = self.conv_out(embedding)
119
+
120
+ return embedding
121
+
122
+
123
+ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
124
+ """
125
+ A ControlNet model.
126
+
127
+ Args:
128
+ in_channels (`int`, defaults to 4):
129
+ The number of channels in the input sample.
130
+ flip_sin_to_cos (`bool`, defaults to `True`):
131
+ Whether to flip the sin to cos in the time embedding.
132
+ freq_shift (`int`, defaults to 0):
133
+ The frequency shift to apply to the time embedding.
134
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
135
+ The tuple of downsample blocks to use.
136
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
137
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
138
+ The tuple of output channels for each block.
139
+ layers_per_block (`int`, defaults to 2):
140
+ The number of layers per block.
141
+ downsample_padding (`int`, defaults to 1):
142
+ The padding to use for the downsampling convolution.
143
+ mid_block_scale_factor (`float`, defaults to 1):
144
+ The scale factor to use for the mid block.
145
+ act_fn (`str`, defaults to "silu"):
146
+ The activation function to use.
147
+ norm_num_groups (`int`, *optional*, defaults to 32):
148
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
149
+ in post-processing.
150
+ norm_eps (`float`, defaults to 1e-5):
151
+ The epsilon to use for the normalization.
152
+ cross_attention_dim (`int`, defaults to 1280):
153
+ The dimension of the cross attention features.
154
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
155
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
156
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
157
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
158
+ encoder_hid_dim (`int`, *optional*, defaults to None):
159
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
160
+ dimension to `cross_attention_dim`.
161
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
162
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
163
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
164
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
165
+ The dimension of the attention heads.
166
+ use_linear_projection (`bool`, defaults to `False`):
167
+ class_embed_type (`str`, *optional*, defaults to `None`):
168
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
169
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
170
+ addition_embed_type (`str`, *optional*, defaults to `None`):
171
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
172
+ "text". "text" will use the `TextTimeEmbedding` layer.
173
+ num_class_embeds (`int`, *optional*, defaults to 0):
174
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
175
+ class conditioning with `class_embed_type` equal to `None`.
176
+ upcast_attention (`bool`, defaults to `False`):
177
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
178
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
179
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
180
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
181
+ `class_embed_type="projection"`.
182
+ controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
183
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
184
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
185
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
186
+ global_pool_conditions (`bool`, defaults to `False`):
187
+ TODO(Patrick) - unused parameter.
188
+ addition_embed_type_num_heads (`int`, defaults to 64):
189
+ The number of heads to use for the `TextTimeEmbedding` layer.
190
+ """
191
+
192
+ _supports_gradient_checkpointing = True
193
+
194
+ @register_to_config
195
+ def __init__(
196
+ self,
197
+ in_channels: int = 4,
198
+ conditioning_channels: int = 3,
199
+ flip_sin_to_cos: bool = True,
200
+ freq_shift: int = 0,
201
+ down_block_types: Tuple[str, ...] = (
202
+ "CrossAttnDownBlock2D",
203
+ "CrossAttnDownBlock2D",
204
+ "CrossAttnDownBlock2D",
205
+ "DownBlock2D",
206
+ ),
207
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
208
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
209
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
210
+ layers_per_block: int = 2,
211
+ downsample_padding: int = 1,
212
+ mid_block_scale_factor: float = 1,
213
+ act_fn: str = "silu",
214
+ norm_num_groups: Optional[int] = 32,
215
+ norm_eps: float = 1e-5,
216
+ cross_attention_dim: int = 1280,
217
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
218
+ encoder_hid_dim: Optional[int] = None,
219
+ encoder_hid_dim_type: Optional[str] = None,
220
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
221
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
222
+ use_linear_projection: bool = False,
223
+ class_embed_type: Optional[str] = None,
224
+ addition_embed_type: Optional[str] = None,
225
+ addition_time_embed_dim: Optional[int] = None,
226
+ num_class_embeds: Optional[int] = None,
227
+ upcast_attention: bool = False,
228
+ resnet_time_scale_shift: str = "default",
229
+ projection_class_embeddings_input_dim: Optional[int] = None,
230
+ controlnet_conditioning_channel_order: str = "rgb",
231
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
232
+ global_pool_conditions: bool = False,
233
+ addition_embed_type_num_heads: int = 64,
234
+ ):
235
+ super().__init__()
236
+
237
+ # If `num_attention_heads` is not defined (which is the case for most models)
238
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
239
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
240
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
241
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
242
+ # which is why we correct for the naming here.
243
+ num_attention_heads = num_attention_heads or attention_head_dim
244
+
245
+ # Check inputs
246
+ if len(block_out_channels) != len(down_block_types):
247
+ raise ValueError(
248
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
249
+ )
250
+
251
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
252
+ raise ValueError(
253
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
254
+ )
255
+
256
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
257
+ raise ValueError(
258
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
259
+ )
260
+
261
+ if isinstance(transformer_layers_per_block, int):
262
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
263
+
264
+ # input
265
+ conv_in_kernel = 3
266
+ conv_in_padding = (conv_in_kernel - 1) // 2
267
+ self.conv_in = nn.Conv2d(
268
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
269
+ )
270
+
271
+ # time
272
+ time_embed_dim = block_out_channels[0] * 4
273
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
274
+ timestep_input_dim = block_out_channels[0]
275
+ self.time_embedding = TimestepEmbedding(
276
+ timestep_input_dim,
277
+ time_embed_dim,
278
+ act_fn=act_fn,
279
+ )
280
+
281
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
282
+ encoder_hid_dim_type = "text_proj"
283
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
284
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
285
+
286
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
287
+ raise ValueError(
288
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
289
+ )
290
+
291
+ if encoder_hid_dim_type == "text_proj":
292
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
293
+ elif encoder_hid_dim_type == "text_image_proj":
294
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
295
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
296
+ # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
297
+ self.encoder_hid_proj = TextImageProjection(
298
+ text_embed_dim=encoder_hid_dim,
299
+ image_embed_dim=cross_attention_dim,
300
+ cross_attention_dim=cross_attention_dim,
301
+ )
302
+
303
+ elif encoder_hid_dim_type is not None:
304
+ raise ValueError(
305
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
306
+ )
307
+ else:
308
+ self.encoder_hid_proj = None
309
+
310
+ # class embedding
311
+ if class_embed_type is None and num_class_embeds is not None:
312
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
313
+ elif class_embed_type == "timestep":
314
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
315
+ elif class_embed_type == "identity":
316
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
317
+ elif class_embed_type == "projection":
318
+ if projection_class_embeddings_input_dim is None:
319
+ raise ValueError(
320
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
321
+ )
322
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
323
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
324
+ # 2. it projects from an arbitrary input dimension.
325
+ #
326
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
327
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
328
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
329
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
330
+ else:
331
+ self.class_embedding = None
332
+
333
+ if addition_embed_type == "text":
334
+ if encoder_hid_dim is not None:
335
+ text_time_embedding_from_dim = encoder_hid_dim
336
+ else:
337
+ text_time_embedding_from_dim = cross_attention_dim
338
+
339
+ self.add_embedding = TextTimeEmbedding(
340
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
341
+ )
342
+ elif addition_embed_type == "text_image":
343
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
344
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
345
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
346
+ self.add_embedding = TextImageTimeEmbedding(
347
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
348
+ )
349
+ elif addition_embed_type == "text_time":
350
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
351
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
352
+
353
+ elif addition_embed_type is not None:
354
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
355
+
356
+ # control net conditioning embedding
357
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
358
+ conditioning_embedding_channels=block_out_channels[0],
359
+ block_out_channels=conditioning_embedding_out_channels,
360
+ conditioning_channels=conditioning_channels,
361
+ )
362
+
363
+ self.down_blocks = nn.ModuleList([])
364
+ self.controlnet_down_blocks = nn.ModuleList([])
365
+
366
+ if isinstance(only_cross_attention, bool):
367
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
368
+
369
+ if isinstance(attention_head_dim, int):
370
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
371
+
372
+ if isinstance(num_attention_heads, int):
373
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
374
+
375
+ # down
376
+ output_channel = block_out_channels[0]
377
+
378
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
379
+ controlnet_block = zero_module(controlnet_block)
380
+ self.controlnet_down_blocks.append(controlnet_block)
381
+
382
+ for i, down_block_type in enumerate(down_block_types):
383
+ input_channel = output_channel
384
+ output_channel = block_out_channels[i]
385
+ is_final_block = i == len(block_out_channels) - 1
386
+
387
+ down_block = get_down_block(
388
+ down_block_type,
389
+ num_layers=layers_per_block,
390
+ transformer_layers_per_block=transformer_layers_per_block[i],
391
+ in_channels=input_channel,
392
+ out_channels=output_channel,
393
+ temb_channels=time_embed_dim,
394
+ add_downsample=not is_final_block,
395
+ resnet_eps=norm_eps,
396
+ resnet_act_fn=act_fn,
397
+ resnet_groups=norm_num_groups,
398
+ cross_attention_dim=cross_attention_dim,
399
+ num_attention_heads=num_attention_heads[i],
400
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
401
+ downsample_padding=downsample_padding,
402
+ use_linear_projection=use_linear_projection,
403
+ only_cross_attention=only_cross_attention[i],
404
+ upcast_attention=upcast_attention,
405
+ resnet_time_scale_shift=resnet_time_scale_shift,
406
+ )
407
+ self.down_blocks.append(down_block)
408
+
409
+ for _ in range(layers_per_block):
410
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
411
+ controlnet_block = zero_module(controlnet_block)
412
+ self.controlnet_down_blocks.append(controlnet_block)
413
+
414
+ if not is_final_block:
415
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
416
+ controlnet_block = zero_module(controlnet_block)
417
+ self.controlnet_down_blocks.append(controlnet_block)
418
+
419
+ # mid
420
+ mid_block_channel = block_out_channels[-1]
421
+
422
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
423
+ controlnet_block = zero_module(controlnet_block)
424
+ self.controlnet_mid_block = controlnet_block
425
+
426
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
427
+ self.mid_block = UNetMidBlock2DCrossAttn(
428
+ transformer_layers_per_block=transformer_layers_per_block[-1],
429
+ in_channels=mid_block_channel,
430
+ temb_channels=time_embed_dim,
431
+ resnet_eps=norm_eps,
432
+ resnet_act_fn=act_fn,
433
+ output_scale_factor=mid_block_scale_factor,
434
+ resnet_time_scale_shift=resnet_time_scale_shift,
435
+ cross_attention_dim=cross_attention_dim,
436
+ num_attention_heads=num_attention_heads[-1],
437
+ resnet_groups=norm_num_groups,
438
+ use_linear_projection=use_linear_projection,
439
+ upcast_attention=upcast_attention,
440
+ )
441
+ elif mid_block_type == "UNetMidBlock2D":
442
+ self.mid_block = UNetMidBlock2D(
443
+ in_channels=block_out_channels[-1],
444
+ temb_channels=time_embed_dim,
445
+ num_layers=0,
446
+ resnet_eps=norm_eps,
447
+ resnet_act_fn=act_fn,
448
+ output_scale_factor=mid_block_scale_factor,
449
+ resnet_groups=norm_num_groups,
450
+ resnet_time_scale_shift=resnet_time_scale_shift,
451
+ add_attention=False,
452
+ )
453
+ else:
454
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
455
+
456
+ @classmethod
457
+ def from_unet(
458
+ cls,
459
+ unet: UNet2DConditionModel,
460
+ controlnet_conditioning_channel_order: str = "rgb",
461
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
462
+ load_weights_from_unet: bool = True,
463
+ conditioning_channels: int = 3,
464
+ ):
465
+ r"""
466
+ Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
467
+
468
+ Parameters:
469
+ unet (`UNet2DConditionModel`):
470
+ The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
471
+ where applicable.
472
+ """
473
+ transformer_layers_per_block = (
474
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
475
+ )
476
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
477
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
478
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
479
+ addition_time_embed_dim = (
480
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
481
+ )
482
+
483
+ controlnet = cls(
484
+ encoder_hid_dim=encoder_hid_dim,
485
+ encoder_hid_dim_type=encoder_hid_dim_type,
486
+ addition_embed_type=addition_embed_type,
487
+ addition_time_embed_dim=addition_time_embed_dim,
488
+ transformer_layers_per_block=transformer_layers_per_block,
489
+ in_channels=unet.config.in_channels,
490
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
491
+ freq_shift=unet.config.freq_shift,
492
+ down_block_types=unet.config.down_block_types,
493
+ only_cross_attention=unet.config.only_cross_attention,
494
+ block_out_channels=unet.config.block_out_channels,
495
+ layers_per_block=unet.config.layers_per_block,
496
+ downsample_padding=unet.config.downsample_padding,
497
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
498
+ act_fn=unet.config.act_fn,
499
+ norm_num_groups=unet.config.norm_num_groups,
500
+ norm_eps=unet.config.norm_eps,
501
+ cross_attention_dim=unet.config.cross_attention_dim,
502
+ attention_head_dim=unet.config.attention_head_dim,
503
+ num_attention_heads=unet.config.num_attention_heads,
504
+ use_linear_projection=unet.config.use_linear_projection,
505
+ class_embed_type=unet.config.class_embed_type,
506
+ num_class_embeds=unet.config.num_class_embeds,
507
+ upcast_attention=unet.config.upcast_attention,
508
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
509
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
510
+ mid_block_type=unet.config.mid_block_type,
511
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
512
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
513
+ conditioning_channels=conditioning_channels,
514
+ )
515
+
516
+ if load_weights_from_unet:
517
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
518
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
519
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
520
+
521
+ if controlnet.class_embedding:
522
+ controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
523
+
524
+ if hasattr(controlnet, "add_embedding"):
525
+ controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
526
+
527
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
528
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
529
+
530
+ return controlnet
531
+
532
+ @property
533
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
534
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
535
+ r"""
536
+ Returns:
537
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
538
+ indexed by its weight name.
539
+ """
540
+ # set recursively
541
+ processors = {}
542
+
543
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
544
+ if hasattr(module, "get_processor"):
545
+ processors[f"{name}.processor"] = module.get_processor()
546
+
547
+ for sub_name, child in module.named_children():
548
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
549
+
550
+ return processors
551
+
552
+ for name, module in self.named_children():
553
+ fn_recursive_add_processors(name, module, processors)
554
+
555
+ return processors
556
+
557
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
558
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
559
+ r"""
560
+ Sets the attention processor to use to compute attention.
561
+
562
+ Parameters:
563
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
564
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
565
+ for **all** `Attention` layers.
566
+
567
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
568
+ processor. This is strongly recommended when setting trainable attention processors.
569
+
570
+ """
571
+ count = len(self.attn_processors.keys())
572
+
573
+ if isinstance(processor, dict) and len(processor) != count:
574
+ raise ValueError(
575
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
576
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
577
+ )
578
+
579
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
580
+ if hasattr(module, "set_processor"):
581
+ if not isinstance(processor, dict):
582
+ module.set_processor(processor)
583
+ else:
584
+ module.set_processor(processor.pop(f"{name}.processor"))
585
+
586
+ for sub_name, child in module.named_children():
587
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
588
+
589
+ for name, module in self.named_children():
590
+ fn_recursive_attn_processor(name, module, processor)
591
+
592
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
593
+ def set_default_attn_processor(self):
594
+ """
595
+ Disables custom attention processors and sets the default attention implementation.
596
+ """
597
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
598
+ processor = AttnAddedKVProcessor()
599
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
600
+ processor = AttnProcessor()
601
+ else:
602
+ raise ValueError(
603
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
604
+ )
605
+
606
+ self.set_attn_processor(processor)
607
+
608
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
609
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
610
+ r"""
611
+ Enable sliced attention computation.
612
+
613
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
614
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
615
+
616
+ Args:
617
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
618
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
619
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
620
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
621
+ must be a multiple of `slice_size`.
622
+ """
623
+ sliceable_head_dims = []
624
+
625
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
626
+ if hasattr(module, "set_attention_slice"):
627
+ sliceable_head_dims.append(module.sliceable_head_dim)
628
+
629
+ for child in module.children():
630
+ fn_recursive_retrieve_sliceable_dims(child)
631
+
632
+ # retrieve number of attention layers
633
+ for module in self.children():
634
+ fn_recursive_retrieve_sliceable_dims(module)
635
+
636
+ num_sliceable_layers = len(sliceable_head_dims)
637
+
638
+ if slice_size == "auto":
639
+ # half the attention head size is usually a good trade-off between
640
+ # speed and memory
641
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
642
+ elif slice_size == "max":
643
+ # make smallest slice possible
644
+ slice_size = num_sliceable_layers * [1]
645
+
646
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
647
+
648
+ if len(slice_size) != len(sliceable_head_dims):
649
+ raise ValueError(
650
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
651
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
652
+ )
653
+
654
+ for i in range(len(slice_size)):
655
+ size = slice_size[i]
656
+ dim = sliceable_head_dims[i]
657
+ if size is not None and size > dim:
658
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
659
+
660
+ # Recursively walk through all the children.
661
+ # Any children which exposes the set_attention_slice method
662
+ # gets the message
663
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
664
+ if hasattr(module, "set_attention_slice"):
665
+ module.set_attention_slice(slice_size.pop())
666
+
667
+ for child in module.children():
668
+ fn_recursive_set_attention_slice(child, slice_size)
669
+
670
+ reversed_slice_size = list(reversed(slice_size))
671
+ for module in self.children():
672
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
673
+
674
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
675
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
676
+ module.gradient_checkpointing = value
677
+
678
+ def forward(
679
+ self,
680
+ sample: torch.Tensor,
681
+ timestep: Union[torch.Tensor, float, int],
682
+ encoder_hidden_states: torch.Tensor,
683
+ controlnet_cond: torch.Tensor,
684
+ conditioning_scale: float = 1.0,
685
+ class_labels: Optional[torch.Tensor] = None,
686
+ timestep_cond: Optional[torch.Tensor] = None,
687
+ attention_mask: Optional[torch.Tensor] = None,
688
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
689
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
690
+ guess_mode: bool = False,
691
+ return_dict: bool = True,
692
+ ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
693
+ """
694
+ The [`ControlNetModel`] forward method.
695
+
696
+ Args:
697
+ sample (`torch.Tensor`):
698
+ The noisy input tensor.
699
+ timestep (`Union[torch.Tensor, float, int]`):
700
+ The number of timesteps to denoise an input.
701
+ encoder_hidden_states (`torch.Tensor`):
702
+ The encoder hidden states.
703
+ controlnet_cond (`torch.Tensor`):
704
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
705
+ conditioning_scale (`float`, defaults to `1.0`):
706
+ The scale factor for ControlNet outputs.
707
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
708
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
709
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
710
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
711
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
712
+ embeddings.
713
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
714
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
715
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
716
+ negative values to the attention scores corresponding to "discard" tokens.
717
+ added_cond_kwargs (`dict`):
718
+ Additional conditions for the Stable Diffusion XL UNet.
719
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
720
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
721
+ guess_mode (`bool`, defaults to `False`):
722
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
723
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
724
+ return_dict (`bool`, defaults to `True`):
725
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
726
+
727
+ Returns:
728
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
729
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
730
+ returned where the first element is the sample tensor.
731
+ """
732
+ # check channel order
733
+ channel_order = self.config.controlnet_conditioning_channel_order
734
+
735
+ if channel_order == "rgb":
736
+ # in rgb order by default
737
+ ...
738
+ elif channel_order == "bgr":
739
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
740
+ else:
741
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
742
+
743
+ # prepare attention_mask
744
+ if attention_mask is not None:
745
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
746
+ attention_mask = attention_mask.unsqueeze(1)
747
+
748
+ #Todo
749
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
750
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
751
+
752
+ # 1. time
753
+ timesteps = timestep
754
+ if not torch.is_tensor(timesteps):
755
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
756
+ # This would be a good case for the `match` statement (Python 3.10+)
757
+ is_mps = sample.device.type == "mps"
758
+ if isinstance(timestep, float):
759
+ dtype = torch.float32 if is_mps else torch.float64
760
+ else:
761
+ dtype = torch.int32 if is_mps else torch.int64
762
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
763
+ elif len(timesteps.shape) == 0:
764
+ timesteps = timesteps[None].to(sample.device)
765
+
766
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
767
+ timesteps = timesteps.expand(sample.shape[0])
768
+
769
+ t_emb = self.time_proj(timesteps)
770
+
771
+ # timesteps does not contain any weights and will always return f32 tensors
772
+ # but time_embedding might actually be running in fp16. so we need to cast here.
773
+ # there might be better ways to encapsulate this.
774
+ t_emb = t_emb.to(dtype=sample.dtype)
775
+
776
+ emb = self.time_embedding(t_emb, timestep_cond)
777
+ aug_emb = None
778
+
779
+ if self.class_embedding is not None:
780
+ if class_labels is None:
781
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
782
+
783
+ if self.config.class_embed_type == "timestep":
784
+ class_labels = self.time_proj(class_labels)
785
+
786
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
787
+ emb = emb + class_emb
788
+
789
+ if self.config.addition_embed_type is not None:
790
+ if self.config.addition_embed_type == "text":
791
+ aug_emb = self.add_embedding(encoder_hidden_states)
792
+
793
+ elif self.config.addition_embed_type == "text_time":
794
+ if "text_embeds" not in added_cond_kwargs:
795
+ raise ValueError(
796
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
797
+ )
798
+ text_embeds = added_cond_kwargs.get("text_embeds")
799
+ if "time_ids" not in added_cond_kwargs:
800
+ raise ValueError(
801
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
802
+ )
803
+ time_ids = added_cond_kwargs.get("time_ids")
804
+ time_embeds = self.add_time_proj(time_ids.flatten())
805
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
806
+
807
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
808
+ add_embeds = add_embeds.to(emb.dtype)
809
+ aug_emb = self.add_embedding(add_embeds)
810
+
811
+ emb = emb + aug_emb if aug_emb is not None else emb
812
+
813
+ # 2. pre-process
814
+ sample = self.conv_in(sample)
815
+
816
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
817
+ sample = sample + controlnet_cond
818
+
819
+ # 3. down
820
+ down_block_res_samples = (sample,)
821
+ for downsample_block in self.down_blocks:
822
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
823
+ sample, res_samples = downsample_block(
824
+ hidden_states=sample,
825
+ temb=emb,
826
+ encoder_hidden_states=encoder_hidden_states,
827
+ attention_mask=attention_mask,
828
+ cross_attention_kwargs=cross_attention_kwargs,
829
+ )
830
+ else:
831
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
832
+
833
+ down_block_res_samples += res_samples
834
+
835
+ # 4. mid
836
+ if self.mid_block is not None:
837
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
838
+ sample = self.mid_block(
839
+ sample,
840
+ emb,
841
+ encoder_hidden_states=encoder_hidden_states,
842
+ attention_mask=attention_mask,
843
+ cross_attention_kwargs=cross_attention_kwargs,
844
+ )
845
+ else:
846
+ sample = self.mid_block(sample, emb)
847
+
848
+ # 5. Control net blocks
849
+
850
+ controlnet_down_block_res_samples = ()
851
+
852
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
853
+ down_block_res_sample = controlnet_block(down_block_res_sample)
854
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
855
+
856
+ down_block_res_samples = controlnet_down_block_res_samples
857
+
858
+ mid_block_res_sample = self.controlnet_mid_block(sample)
859
+
860
+ # 6. scaling
861
+ if guess_mode and not self.config.global_pool_conditions:
862
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
863
+ scales = scales * conditioning_scale
864
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
865
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
866
+ else:
867
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
868
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
869
+
870
+ if self.config.global_pool_conditions:
871
+ down_block_res_samples = [
872
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
873
+ ]
874
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
875
+
876
+ if not return_dict:
877
+ return (down_block_res_samples, mid_block_res_sample)
878
+
879
+ return ControlNetOutput(
880
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
881
+ )
882
+
883
+
884
+ def zero_module(module):
885
+ for p in module.parameters():
886
+ nn.init.zeros_(p)
887
+ return module