Spaces:
Running
Running
File size: 11,199 Bytes
bce439c 9632d12 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 76a0dbd 772fb9a 76a0dbd 772fb9a 76a0dbd 772fb9a 76a0dbd 772fb9a 9632d12 76a0dbd 975601a 76a0dbd 975601a 76a0dbd 975601a 76a0dbd 0e14842 76a0dbd 0e14842 9632d12 bb4e06a 9632d12 bce439c bb4e06a bce439c 0e14842 fda85af 76a0dbd bce439c 0e14842 9632d12 0e14842 bce439c bf65a8f 0e14842 76a0dbd a23db70 76a0dbd bb4e06a 9632d12 76a0dbd 9632d12 bb4e06a 76a0dbd 9632d12 76a0dbd 9632d12 76a0dbd 9632d12 76a0dbd bb4e06a 9632d12 bb4e06a 76a0dbd 9632d12 76a0dbd bb4e06a 76a0dbd bb4e06a bce439c fda85af bce439c 76a0dbd 0e14842 76a0dbd 975601a 76a0dbd 975601a 76a0dbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Apply more comprehensive patches to Gradio's utility functions
import gradio_client.utils
import types
# Patch 1: Fix the _json_schema_to_python_type function
original_json_schema = gradio_client.utils._json_schema_to_python_type
def patched_json_schema(schema, defs=None):
# Handle boolean values directly
if isinstance(schema, bool):
return "bool"
# Handle cases where 'additionalProperties' is a boolean
try:
if "additionalProperties" in schema and isinstance(schema["additionalProperties"], bool):
schema["additionalProperties"] = {"type": "any"}
except (TypeError, KeyError):
pass
# Call the original function
try:
return original_json_schema(schema, defs)
except Exception as e:
# Fallback to a safe value when the schema can't be parsed
return "any"
# Replace the original function with our patched version
gradio_client.utils._json_schema_to_python_type = patched_json_schema
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
# Safe settings for model loading
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/flux-chatgpt-ghibli-lora"
def load_model_with_retry(max_retries=5):
for attempt in range(max_retries):
try:
print(f"Loading model attempt {attempt+1}/{max_retries}...")
pipeline = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
use_safetensors=True,
resume_download=True
)
print("Model loaded successfully, loading LoRA weights...")
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
print("Pipeline ready!")
return pipeline
except Exception as e:
if attempt < max_retries - 1:
wait_time = 10 * (attempt + 1)
print(f"Error loading model: {e}. Retrying in {wait_time} seconds...")
import time
time.sleep(wait_time)
else:
raise Exception(f"Failed to load model after {max_retries} attempts: {e}")
# Load the model
pipeline = load_model_with_retry()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Error handling for the inference process
try:
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
except Exception as e:
# Log the error and return a simple error image
print(f"Error during inference: {e}")
error_img = Image.new('RGB', (width, height), color='red')
return error_img, seed, load_generated_images()
examples = [
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves. The armor reflects the pink and purple hues of the alien sunset, creating an ethereal glow around the figure. [trigger]",
"Ghibli style young mechanic girl in a floating workshop, surrounded by hovering tools and glowing mechanical parts, her blue overalls covered in oil stains, tinkering with a semi-transparent robot companion. Magical sparks fly as she works, while floating islands with waterfalls drift past her open workshop window. [trigger]",
"Ghibli style ancient forest guardian robot, covered in moss and flowering vines, sitting peacefully in a crystal-clear lake. Its gentle eyes glow with soft blue light, while bioluminescent dragonflies dance around its weathered metal frame. Ancient tech symbols on its surface pulse with a gentle rhythm. [trigger]",
"Ghibli style sky whale transport ship, its metallic skin adorned with traditional Japanese patterns, gliding through cotton candy clouds at sunrise. Small floating gardens hang from its sides, where workers in futuristic kimonos tend to glowing plants. Rainbow auroras shimmer in the background. [trigger]",
"Ghibli style cyber-shrine maiden with flowing holographic robes, performing a ritual dance among floating lanterns and digital cherry blossoms. Her traditional headdress emits soft light patterns, while spirit-like AI constructs swirl around her in elegant patterns. The scene is set in a modern shrine with both ancient wood and sleek chrome elements. [trigger]",
"Ghibli style robot farmer tending to floating rice paddies in the sky, wearing a traditional straw hat with advanced sensors. Its gentle movements create ripples in the water as it plants glowing rice seedlings. Flying fish leap between the terraced fields, leaving trails of sparkles in their wake, while future Tokyo's spires gleam in the distance. [trigger]"
]
css = """
footer {
visibility: hidden;
}
"""
# Use a simpler UI configuration that is less likely to cause issues
with gr.Blocks(css=css, analytics_enabled=False) as demo:
gr.HTML('<div class="title"> FLUX Ghibli LoRA</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt")
with gr.Row():
run_button = gr.Button("Generate Image")
clear_button = gr.Button("Clear")
with gr.Accordion("Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=prompt,
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
seed_text = gr.Number(label="Used Seed", value=42)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=3,
value=load_generated_images(),
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery")
# Event handlers
def refresh_gallery():
return load_generated_images()
def clear_output():
return "", gr.update(value=None), seed
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
clear_button.click(
fn=clear_output,
inputs=None,
outputs=[prompt, result, seed_text]
)
run_button.click(
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_text, generated_gallery],
)
prompt.submit(
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_text, generated_gallery],
)
# Launch with fallback options
try:
demo.queue(concurrency_count=1, max_size=10)
demo.launch(debug=True, show_api=False)
except Exception as e:
print(f"Error during launch: {e}")
print("Trying alternative launch configuration...")
# Skip queue and simplify launch parameters
demo.launch(debug=True, show_api=False, share=False) |