Spaces:
Running
on
Zero
Running
on
Zero
import subprocess # ๐ฅฒ | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import spaces | |
import gradio as gr | |
import re | |
import torch | |
import os | |
import json | |
import time | |
from pydantic import BaseModel | |
from typing import Tuple | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from PIL import Image | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
# ----------------------- Model and Processor Loading ----------------------- # | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2.5-VL-7B-Instruct", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
device_map="auto", | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
# ----------------------- Pydantic Model Definition ----------------------- # | |
class GeneralRetrievalQuery(BaseModel): | |
broad_topical_query: str | |
broad_topical_explanation: str | |
specific_detail_query: str | |
specific_detail_explanation: str | |
visual_element_query: str | |
visual_element_explanation: str | |
def extract_json_with_regex(text): | |
pattern = r'```(?:json)?\s*(.+?)\s*```' | |
matches = re.findall(pattern, text, re.DOTALL) | |
if matches: | |
return matches[0] | |
return None | |
def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]: | |
if prompt_name != "general": | |
raise ValueError("Only 'general' prompt is available in this version") | |
prompt = """You are an AI assistant specialized in document retrieval tasks. Given an image of a document page, your task is to generate retrieval queries that someone might use to find this document in a large corpus. | |
Please generate 3 different types of retrieval queries: | |
1. A broad topical query: This should cover the main subject of the document. | |
2. A specific detail query: This should focus on a particular fact, figure, or point made in the document. | |
3. A visual element query: This should reference a chart, graph, image, or other visual component in the document, if present. Don't just reference the name of the visual element but generate a query which this illustration may help answer or be related to. | |
Important guidelines: | |
- Ensure the queries are relevant for retrieval tasks, not just describing the page content. | |
- Frame the queries as if someone is searching for this document, not asking questions about its content. | |
- Make the queries diverse and representative of different search strategies. | |
For each query, also provide a brief explanation of why this query would be effective in retrieving this document. | |
Format your response as a JSON object with the following structure: | |
{ | |
"broad_topical_query": "Your query here", | |
"broad_topical_explanation": "Brief explanation", | |
"specific_detail_query": "Your query here", | |
"specific_detail_explanation": "Brief explanation", | |
"visual_element_query": "Your query here", | |
"visual_element_explanation": "Brief explanation" | |
} | |
If there are no relevant visual elements, replace the third query with another specific detail query. | |
Here is the document image to analyze: | |
<image> | |
Generate the queries based on this image and provide the response in the specified JSON format.""" | |
return prompt, GeneralRetrievalQuery | |
prompt, pydantic_model = get_retrieval_prompt("general") | |
# ----------------------- Input Preprocessing ----------------------- # | |
def _prep_data_for_input(image): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": prompt}, | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
return processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
# ----------------------- Output Formatting ----------------------- # | |
def format_output(data: dict, output_format: str) -> str: | |
""" | |
Convert the JSON data into the desired output format. | |
output_format: "JSON", "Markdown", "Table" | |
""" | |
if output_format == "JSON": | |
# Wrap with code block for better display in Markdown view | |
return f"```json\n{json.dumps(data, indent=2, ensure_ascii=False)}\n```" | |
elif output_format == "Markdown": | |
md_lines = [] | |
for key, value in data.items(): | |
md_lines.append(f"**{key.replace('_', ' ').title()}:** {value}") | |
return "\n\n".join(md_lines) | |
elif output_format == "Table": | |
headers = ["Field", "Content"] | |
separator = " | ".join(["---"] * len(headers)) | |
rows = [f"| {' | '.join(headers)} |", f"| {separator} |"] | |
for key, value in data.items(): | |
rows.append(f"| {key.replace('_', ' ').title()} | {value} |") | |
return "\n".join(rows) | |
else: | |
return f"```json\n{json.dumps(data, indent=2, ensure_ascii=False)}\n```" | |
# ----------------------- Response Generation ----------------------- # | |
def generate_response(image, output_format: str = "JSON"): | |
inputs = _prep_data_for_input(image) | |
inputs = inputs.to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=200) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False, | |
)[0] | |
try: | |
json_str = extract_json_with_regex(output_text) | |
if json_str: | |
parsed = json.loads(json_str) | |
return format_output(parsed, output_format) | |
parsed = json.loads(output_text) | |
return format_output(parsed, output_format) | |
except Exception: | |
gr.Warning("Failed to parse JSON from output") | |
return output_text | |
# ----------------------- Interface Title and Description (in English) ----------------------- # | |
title = "Elegant ColPali Query Generator using Qwen2.5-VL" | |
description = """**ColPali** is a multimodal approach optimized for document retrieval. | |
This interface uses the [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) model to generate relevant retrieval queries based on a document image. | |
The queries include: | |
- **Broad Topical Query:** Covers the main subject of the document. | |
- **Specific Detail Query:** Focuses on a particular fact, figure, or point from the document. | |
- **Visual Element Query:** References a visual component (e.g., chart, graph) from the document. | |
Refer to the examples below to generate queries suitable for your document image. | |
For more information, please see the associated blog post. | |
""" | |
examples = [ | |
"examples/Approche_no_13_1977.pdf_page_22.jpg", | |
"examples/SRCCL_Technical-Summary.pdf_page_7.jpg", | |
] | |
# ----------------------- Custom CSS ----------------------- # | |
custom_css = """ | |
body { | |
background: #f7f9fb; | |
font-family: 'Segoe UI', sans-serif; | |
color: #333; | |
} | |
header { | |
text-align: center; | |
padding: 20px; | |
margin-bottom: 20px; | |
} | |
header h1 { | |
font-size: 3em; | |
color: #2c3e50; | |
} | |
.gradio-container { | |
padding: 20px; | |
} | |
.gr-button { | |
background-color: #3498db !important; | |
color: #fff !important; | |
border: none !important; | |
padding: 10px 20px !important; | |
border-radius: 5px !important; | |
font-size: 1em !important; | |
} | |
.gr-button:hover { | |
background-color: #2980b9 !important; | |
} | |
.gr-gallery-item { | |
border-radius: 10px; | |
overflow: hidden; | |
box-shadow: 0 2px 10px rgba(0,0,0,0.1); | |
} | |
footer { | |
text-align: center; | |
padding: 20px 0; | |
font-size: 0.9em; | |
color: #555; | |
} | |
""" | |
# ----------------------- Gradio Interface ----------------------- # | |
with gr.Blocks(css=custom_css, title=title) as demo: | |
with gr.Column(variant="panel"): | |
gr.Markdown(f"<header><h1>{title}</h1></header>") | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.TabItem("Query Generation"): | |
gr.Markdown("### Generate Retrieval Queries from a Document Image") | |
with gr.Row(): | |
image_input = gr.Image(label="Upload Document Image", type="pil") | |
with gr.Row(): | |
output_format = gr.Radio( | |
choices=["JSON", "Markdown", "Table"], | |
value="JSON", | |
label="Output Format", | |
info="Select the desired output format." | |
) | |
generate_button = gr.Button("Generate Query") | |
# ์ถ๋ ฅ ์ปดํฌ๋ํธ๋ฅผ gr.Markdown์ผ๋ก ๋ณ๊ฒฝํ์ฌ Markdown ๋ฐ Table ํ์์ด ์ ๋๋ก ๋ ๋๋ง๋๋๋ก ํจ. | |
output_text = gr.Markdown(label="Generated Query") | |
with gr.Accordion("Examples", open=False): | |
gr.Examples( | |
label="Query Examples", | |
examples=[ | |
"examples/Approche_no_13_1977.pdf_page_22.jpg", | |
"examples/SRCCL_Technical-Summary.pdf_page_7.jpg", | |
], | |
inputs=image_input, | |
) | |
generate_button.click( | |
fn=generate_response, | |
inputs=[image_input, output_format], | |
outputs=output_text | |
) | |
gr.Markdown("<footer>Join our community on <a href='https://discord.gg/openfreeai' target='_blank'>Discord</a></footer>") | |
demo.launch() | |