BiRefNet_plus / app.py
ginipick's picture
Update app.py
adfe191 verified
##########################################################
# 0. ํ™˜๊ฒฝ ์„ค์ • ๋ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ž„ํฌํŠธ
##########################################################
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Tuple, Optional
from PIL import Image
from gradio_imageslider import ImageSlider
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
import random
# Transformers
from transformers import (
AutoConfig,
AutoModelForImageSegmentation,
)
# Hugging Face Hub
from huggingface_hub import hf_hub_download
##########################################################
# 1. Config ๋ฐ from_config() ์ดˆ๊ธฐํ™”
##########################################################
# 1) Config๋งŒ ๋จผ์ € ๋กœ๋“œ
config = AutoConfig.from_pretrained(
"zhengpeng7/BiRefNet", # ์˜ˆ์‹œ
trust_remote_code=True
)
# 2) config.get_text_config์— ๋”๋ฏธ ๋ฉ”์„œ๋“œ ๋ถ€์—ฌ (tie_word_embeddings=False)
def dummy_get_text_config(decoder=True):
return type("DummyTextConfig", (), {"tie_word_embeddings": False})()
config.get_text_config = dummy_get_text_config
# 3) ๋ชจ๋ธ ๊ตฌ์กฐ๋งŒ ๋งŒ๋“ค๊ธฐ
birefnet = AutoModelForImageSegmentation.from_config(config, trust_remote_code=True)
birefnet.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
birefnet.to(device)
birefnet.half()
##########################################################
# 2. ๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ๋‹ค์šด๋กœ๋“œ & ๋กœ๋“œ
##########################################################
# huggingface_hub์—์„œ safetensors ๋˜๋Š” bin ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ
# (repo_id, filename ๋“ฑ์€ ์‹ค์ œ ์‚ฌ์šฉ ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ๋ณ€๊ฒฝ)
weights_path = hf_hub_download(
repo_id="zhengpeng7/BiRefNet", # ์˜ˆ์‹œ
filename="model.safetensors", # ๋˜๋Š” "pytorch_model.bin"
trust_remote_code=True
)
print("Downloaded weights to:", weights_path)
# state_dict ๋กœ๋“œ
print("Loading BiRefNet weights from HF Hub file:", weights_path)
state_dict = torch.load(weights_path, map_location="cpu")
missing, unexpected = birefnet.load_state_dict(state_dict, strict=False)
print("[Info] Missing keys:", missing)
print("[Info] Unexpected keys:", unexpected)
torch.cuda.empty_cache()
##########################################################
# 3. ์ด๋ฏธ์ง€ ํ›„์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋“ค
##########################################################
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image_np = np.array(image) / 255.0
mask_np = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
##########################################################
# 4. ์˜ˆ์ œ ์„ค์ • ๋ฐ ๊ธฐํƒ€
##########################################################
usage_to_weights_file = {
'General': 'BiRefNet',
'General-HR': 'BiRefNet_HR',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
'Matting': 'BiRefNet-matting',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')]
examples_text = [[url, "1024x1024", "General"] for url in [
"https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
]]
examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')]
descriptions = (
"Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n"
"The resolution used in our training was `1024x1024`, which is suggested for good results! "
"`2048x2048` is suggested for BiRefNet_HR.\n"
"Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n"
"We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access."
)
##########################################################
# 5. ์ถ”๋ก  ํ•จ์ˆ˜ (์ด๋ฏธ ๋กœ๋“œ๋œ birefnet ๋ชจ๋ธ ์‚ฌ์šฉ)
##########################################################
@spaces.GPU
def predict(images, resolution, weights_file):
# weights_file์€ ์—ฌ๊ธฐ์„œ๋Š” ๋ฌด์‹œํ•˜๊ณ , ์ด๋ฏธ ๋กœ๋“œ๋œ birefnet ์‚ฌ์šฉ
assert images is not None, 'Images cannot be None.'
# Parse resolution
try:
w, h = map(int, resolution.strip().split('x'))
w, h = int(w//32*32), int(h//32*32)
except:
w, h = 1024, 1024
resolution_tuple = (w, h)
# ๋ฆฌ์ŠคํŠธ์ธ์ง€ ํ™•์ธ
if isinstance(images, list):
is_batch = True
outputs, save_paths = [], []
save_dir = 'preds-BiRefNet'
os.makedirs(save_dir, exist_ok=True)
else:
images = [images]
is_batch = False
for idx, image_src in enumerate(images):
# ํŒŒ์ผ ๊ฒฝ๋กœ ํ˜น์€ URL
if isinstance(image_src, str):
if os.path.isfile(image_src):
image_ori = Image.open(image_src)
else:
resp = requests.get(image_src)
image_ori = Image.open(BytesIO(resp.content))
# numpy array โ†’ PIL
elif isinstance(image_src, np.ndarray):
image_ori = Image.fromarray(image_src)
else:
image_ori = image_src.convert('RGB')
# ์ „์ฒ˜๋ฆฌ
preproc = ImagePreprocessor(resolution_tuple)
image_proc = preproc.proc(image_ori.convert('RGB')).unsqueeze(0).to(device).half()
# ์ถ”๋ก 
with torch.inference_mode():
preds = birefnet(image_proc)[-1].sigmoid().cpu()
pred_mask = preds[0].squeeze()
# ํ›„์ฒ˜๋ฆฌ
pred_pil = transforms.ToPILImage()(pred_mask)
image_masked = refine_foreground(image_ori, pred_pil)
image_masked.putalpha(pred_pil.resize(image_ori.size))
if is_batch:
fbase = (os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}")
outpath = os.path.join(save_dir, f"{fbase}.png")
image_masked.save(outpath)
save_paths.append(outpath)
outputs.append(image_masked)
else:
outputs = [image_masked, image_ori]
torch.cuda.empty_cache()
if is_batch:
zippath = os.path.join(save_dir, f"{save_dir}.zip")
with zipfile.ZipFile(zippath, 'w') as zipf:
for fpath in save_paths:
zipf.write(fpath, os.path.basename(fpath))
return outputs, zippath
else:
return outputs
##########################################################
# 6. Gradio UI
##########################################################
css = """
body {
background: linear-gradient(135deg, #667eea, #764ba2);
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
margin: 0;
padding: 0;
}
.gradio-container {
background: rgba(255, 255, 255, 0.95);
border-radius: 15px;
padding: 30px 40px;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
margin: 40px auto;
max-width: 1200px;
}
.gradio-container h1 {
color: #333;
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
width: 95% !important;
max-width: unset !important;
}
#examples_container {
margin: auto;
width: 90%;
}
#examples_row {
justify-content: center;
}
.sidebar {
background: rgba(255, 255, 255, 0.98);
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
button, .btn {
background: linear-gradient(90deg, #ff8a00, #e52e71);
border: none;
color: #fff;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
border-radius: 5px;
cursor: pointer;
transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
transform: scale(1.05);
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo (No Tie-Weights Crash)</h1>
<p align="center" style="font-size:1.1em; color:#555;">
Using <code>from_config()</code> + local <code>state_dict</code> or <code>hf_hub_download</code> to bypass tie_weights issues
</p>
"""
with gr.Blocks(css=css, title="BiRefNet Demo") as demo:
gr.Markdown(title_html)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type='pil', label='Upload an Image')
resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn = gr.Button("Predict")
with gr.Column(scale=2):
output_slider = ImageSlider(label="Result", type="pil")
gr.Examples(examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples")
with gr.Tab("Text"):
with gr.Row():
with gr.Column(scale=1):
image_url = gr.Textbox(label="Paste an Image URL")
resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_text = gr.Button("Predict")
with gr.Column(scale=2):
output_slider_text = ImageSlider(label="Result", type="pil")
gr.Examples(examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples")
with gr.Tab("Batch"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Multiple Images", type="filepath", file_count="multiple")
resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_batch = gr.Button("Predict")
with gr.Column(scale=2):
output_gallery = gr.Gallery(label="Results", scale=1)
zip_output = gr.File(label="Zip Download")
gr.Examples(examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples")
gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>")
# ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
predict_btn.click(
fn=predict,
inputs=[image_input, resolution_input, weights_radio],
outputs=output_slider
)
predict_btn_text.click(
fn=predict,
inputs=[image_url, resolution_input_text, weights_radio_text],
outputs=output_slider_text
)
predict_btn_batch.click(
fn=predict,
inputs=[file_input, resolution_input_batch, weights_radio_batch],
outputs=[output_gallery, zip_output]
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)