gorkemgoknar commited on
Commit
98ee681
1 Parent(s): e94c8fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -146,8 +146,8 @@ zephyr_model_path="./zephyr-7b-beta.Q5_K_M.gguf"
146
 
147
  #print("Downloading Yi-6B")
148
  #Yi-6B
149
- hf_hub_download(repo_id="TheBloke/Yi-6B-GGUF", local_dir=".", filename="yi-6b.Q5_K_M.gguf")
150
- yi_model_path="./yi-6b.Q5_K_M.gguf"
151
 
152
 
153
  from llama_cpp import Llama
@@ -167,8 +167,8 @@ llm_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
167
  print("Running LLM Zephyr")
168
  llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
169
 
170
- print("Running Yi LLM")
171
- llm_yi = Llama(model_path=yi_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
172
 
173
 
174
  # Mistral formatter
@@ -744,7 +744,7 @@ EXAMPLES = [
744
 
745
  ]
746
 
747
- MODELS = ["Mistral 7B Instruct","Zephyr 7B Beta", "Yi 6B"]
748
 
749
  OTHER_HTML=f"""<div>
750
  <a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
@@ -851,7 +851,6 @@ It relies on following models :
851
  Speech to Text : [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
852
  LLM Mistral : [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as the chat model.
853
  LLM Zephyr : [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF).
854
- LLM Yi : [Yi-6B](https://huggingface.co/01-ai/Yi-6B) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/Yi-6B-GGUF).
855
  Text to Speech : [Coqui's XTTS V2](https://huggingface.co/spaces/coqui/xtts) as a Multilingual TTS model, to generate the chatbot answers. This time, the model is hosted locally.
856
 
857
  Note:
 
146
 
147
  #print("Downloading Yi-6B")
148
  #Yi-6B
149
+ #hf_hub_download(repo_id="TheBloke/Yi-6B-GGUF", local_dir=".", filename="yi-6b.Q5_K_M.gguf")
150
+ #yi_model_path="./yi-6b.Q5_K_M.gguf"
151
 
152
 
153
  from llama_cpp import Llama
 
167
  print("Running LLM Zephyr")
168
  llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
169
 
170
+ #print("Running Yi LLM")
171
+ #llm_yi = Llama(model_path=yi_model_path,n_gpu_layers=round(GPU_LAYERS/2),max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
172
 
173
 
174
  # Mistral formatter
 
744
 
745
  ]
746
 
747
+ MODELS = ["Mistral 7B Instruct","Zephyr 7B Beta"]
748
 
749
  OTHER_HTML=f"""<div>
750
  <a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
 
851
  Speech to Text : [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
852
  LLM Mistral : [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as the chat model.
853
  LLM Zephyr : [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF).
 
854
  Text to Speech : [Coqui's XTTS V2](https://huggingface.co/spaces/coqui/xtts) as a Multilingual TTS model, to generate the chatbot answers. This time, the model is hosted locally.
855
 
856
  Note: