|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import modin.pandas as pd |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline |
|
import random |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-realistic-v3.6", torch_dtype=torch.float16, safety_checker=None) |
|
pipe = pipe.to(device) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None) |
|
upscaler = upscaler.to(device) |
|
upscaler.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale): |
|
|
|
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) |
|
|
|
if upscale == "Yes": |
|
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0] |
|
upscaled = upscaler(Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0] |
|
return (image, upscaled) |
|
else: |
|
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0] |
|
return (image, image) |
|
|
|
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), |
|
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'), |
|
gr.Slider(512, 1024, 768, step=128, label='Height'), |
|
gr.Slider(512, 1024, 768, step=128, label='Width'), |
|
gr.Slider(1, maximum=15, value=7, step=.25, label='Guidance Scale'), |
|
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), |
|
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), |
|
gr.Radio(["Yes", "No"], label='Upscale?', value='No'), |
|
], |
|
outputs=[gr.Image(label='Generated Image'), gr.Image(label='Generated Image')], |
|
title="PhotoReal V3.6 with SD x2 Upscaler - GPU", |
|
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", |
|
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |