|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import modin.pandas as pd |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v2", safety_checker=None) |
|
pipe = pipe.to(device) |
|
|
|
def genie (prompt, scale, steps, seed): |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0] |
|
return images |
|
|
|
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), |
|
gr.Slider(1, maximum=15, value=10, step=.25), |
|
gr.Slider(1, maximum=100, value=50, step=1), |
|
gr.Slider(minimum=1, step=1, maximum=987654321, randomize=True)], |
|
outputs='image', title="OpenJourney V2 GPU", description="OJ V2 GPU.", |
|
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |