File size: 2,912 Bytes
07d5247 058e9d8 6d70521 058e9d8 01807fb 07d5247 058e9d8 3b633b6 36b6742 33eab73 36b6742 01807fb 33eab73 07d5247 15aeac6 fbe4e12 a2749d1 3f4749b aee7712 a2749d1 3f4749b a2749d1 058e9d8 a2749d1 b32943f 33eab73 d5fa67e a2749d1 26d38a8 35b8f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
upscaler.enable_xformers_memory_efficient_attention()
def genie (Prompt, negative_prompt, height, width, scale, steps, Seed, upscale):
generator = torch.Generator(device=device).manual_seed(Seed)
if upscale == "Yes":
low_res_latents = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
image = upscaler(Prompt, negative_prompt=negative_prompt, image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
else:
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, maximum=15, value=10, step=.25),
gr.Slider(25, maximum=100, value=50, step=25),
gr.Slider(minimum=1, step=1, maximum=9999999999999999, randomize=True),
gr.Radio(["Yes", "No"], label='Upscale?', value='No'),
],
outputs=gr.Image(label='Generated Image'),
title="PhotoReal V2 with SD x2 Upscaler - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |