File size: 2,400 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
07d5247
058e9d8
3b633b6
36b6742
 
01807fb
058e9d8
07d5247
aee7712
3f4749b
a2749d1
3f4749b
aee7712
a2749d1
3f4749b
a2749d1
058e9d8
 
a2749d1
b32943f
 
 
 
 
d5fa67e
 
a2749d1
26d38a8
 
058e9d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
pipe = pipe.to(device)

def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
    generator = torch.Generator(device=device).manual_seed(seed)
    if upscale == "Yes":
        low_res_latents = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
        image = upscaler(Prompt, negative_prompt=negative_prompt, image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
    else:
        image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=10, step=.25), 
                               gr.Slider(25, maximum=100, value=50, step=25), 
                               gr.Slider(minimum=1, step=1, maximum=9999999999999999, randomize=True), 
                               gr.Radio(["Yes", "No"], label='Upscale?'),
                              ],
             outputs=gr.Image(label='Generated Image'), 
             title="PhotoReal V2 with SD x2 Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True)