File size: 1,908 Bytes
07d5247 058e9d8 6d70521 058e9d8 01807fb 07d5247 058e9d8 54a9b28 01807fb 058e9d8 07d5247 0c639c6 01807fb 0c639c6 e7f7ab4 01807fb 058e9d8 f2ae260 670d739 abc3bb5 934504b 26d38a8 058e9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16)
upscaler = upscaler.to(device)
pipe = pipe.to(device)
def genie (Prompt, scale, steps, Seed):
generator = torch.Generator(device=device).manual_seed(Seed)
#images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
low_res_latents = pipe(Prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
upscaled_image = upscaler(prompt='', image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
return upscaled_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Slider(1, maximum=15, value=10, step=.25, label='Prompt Guidance Scale:', interactive=True),
gr.Slider(1, maximum=100, value=50, step=1, label='Number of Iterations: 50 is typically fine.'),
gr.Slider(minimum=1, step=10, maximum=999999999999999999, randomize=True, interactive=True)],
outputs=gr.Image(label='512x512 Generated Image'),
title="PhotoReal V2 with SD x2 Upscaler - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |