File size: 3,090 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
9d9e3ec
10743f1
3b633b6
4d05eb2
33eab73
 
3459d34
 
 
07d5247
c3e0a32
6b2dfd8
a2749d1
cdd3e1a
8bedd7f
c3e0a32
d6c9a76
a2749d1
3c734f0
d6c9a76
058e9d8
 
a2749d1
b32943f
 
81727a0
ed810ef
70733c7
ebec2b0
 
d6c9a76
 
26d38a8
35b8f44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = 'cuda' #if torch.cuda.is_available() else 'cpu'

pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.7.5", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)

def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    if upscale == "Yes":
        #n_steps = 30
        int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
        image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
        return image
    else:
        image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=7, step=.25, label='Guidance Scale'), 
                               gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
                               gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')],
             outputs=gr.Image(label='Generated Image'), 
             title="PhotoReal V3.6 with SDXL 1.0 Refiner - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)