File size: 3,072 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
9d9e3ec
058e9d8
3b633b6
38b12a9
33eab73
 
3459d34
 
 
07d5247
0de1ba7
6b2dfd8
a2749d1
3459d34
 
3dd76b2
3459d34
 
a2749d1
3c734f0
70733c7
058e9d8
 
a2749d1
b32943f
 
81727a0
ed810ef
70733c7
3459d34
d5fa67e
70733c7
d3b773f
26d38a8
35b8f44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("circulus/canvers-realistic-v3.6", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)

def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    if upscale == "Yes":
        n_steps = 40
        high_noise_frac = 0.8
        int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
        image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image, num_inference_steps=n_steps, denoising_start=high_noise_frac).images[0]
        return (image, refined)
    else:
        image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
    return (image, image)
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=7, step=.25, label='Guidance Scale'), 
                               gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner', value='No'),
                              ],
             outputs=[gr.Image(label='Generated Image'), gr.Image(label='Generated Image')], 
             title="PhotoReal V3.6 with SD x2 Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)